Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zoologists challenge longstanding theory that ‘eyespots’ mimic the eyes of predators’ enemies

22.02.2008
Circular markings on creatures such as butterflies are effective against predators because they are conspicuous features, not because they mimic the eyes of the predators’ own enemies, according to research published today in the journal, Behavioral Ecology [1]. Zoologists based at the University of Cambridge challenge the 150-year-old theory about why these markings are effective against predators.

Many animals possess protective markings to avoid predation, including patterns to reduce the risk of detection (camouflage), to indicate that the animal is toxic or inedible (‘warning colours’), or to mimic another animal or object (‘mimicry’ and ‘masquerade’). In addition, many creatures such as butterflies, moths, and fish possess two or more pairs of circular markings, often referred to as ‘eyespots’. Many eyespots are effective in startling or intimidating predators, and can help to prevent or stop an attack. For the past 150 years it has been assumed that this is because they mimic the eyes of the predator’s own enemies.

However, recent work by University of Cambridge zoologists, Martin Stevens, Chloe Hardman, and Claire Stubbins, indicates that this widely-held hypothesis has no experimental support.

Stevens, Hardman, and Stubbins tested the response of wild avian predators to artificial moths, created from waterproof paper. Specific patterns, such as intimidating eyespots of different shapes, sizes and number, and with different levels of eye mimicry, were printed on to the paper using a high quality printer. These ‘moths’ were then pinned to trees of various species at a height of one to three metres in the mixed deciduous Madingley Woods in Cambridgeshire, UK. Attached to each of the artificial moths was an edible mealworm as a temptation for woodland birds such as the blue tits, great tits, blackbirds, and house sparrows.

The zoologists discovered that artificial moths with circular markings survived no better than those with other conspicuous features and that the features of eyespots which most encouraged predators to avoid them are large size, a high number of spots, and conspicuousness in general.

As Dr Stevens explains, ‘the birds were equally likely to avoid artificial moths with markings such as bars and squares as they were to avoid those with two eye-like markings. This leads us to conclude that eyespots work because they are highly conspicuous features, not because they mimic the eyes of the predators’ own enemies. This suggests that circular markings on many real animals need not necessarily, as most accounts claim, mimic the eyes of other animals.’

[1] Conspicuousness, not eye mimicry, makes ‘‘eyespots’’ effective antipredator signals (Martin Stevens, Chloe J. Hardman, and Claire L. Stubbins) Behavioral Ecology doi:10.1093/beheco/arm162

Dr Martin Stevens | alfa
Further information:
http://www.oxfordjournals.org/our_journals/beheco/press_releases/freepdf/arm162.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>