Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer protects grass

05.06.2002


To help the nature to recover from harmful impacts of the mining industry, Svetlana Mesyats and her team from the Geological Institute of the Kola Research Center RAS offer the method, which implies the application of a thin invisible polymeric film onto the soil surface and provides for a fast and successful minesite recultivation.Polymer Protects Grass

It is not surprising that such a polymeric covering is invented in Apatity. People leaving on the Cola Peninsula often need to deal with a destroyed soil cover and a bare infertile land. As a consequence of mining, a significant part of the peninsula is either stripped of the upper ground layer or buried under dumps of the barren rock. Water and wind erosion and sharp fluctuations in temperature make it impossible for a young grass to survive on this infertile ground, only clouds of dust fly over these bare lands. And such a situation is just the same in all mining and metallurgical areas in the North.

However, in the environs of Apatity the problem of dust storms has been solved. A thick grass cover has been created on barren rock dumps, and eyes and mouths of local population are no longer filled with the tons of dust. The idea is as simple as any stroke of genius.



Lawns are usually created the following way. A fertile soil is poured onto a certain plot of land, and a lawn grass is sown. To provide a high quality of lawn, the surface is covered with a coarse cloth (sacking) or a modern polymeric material (e.g., lutrosil). On average-quality or very large lawns, just a thin protective covering of ground is applied over seeds and the soil surface is slightly compacted to minimize erosion. Further success depends only on good luck. A strong rainstorm can wash off the surface layer of soil together with seeds at once, especially, if the lawn is situated in a gully or on a slope facing a road. So, all the work could be ruined. Of course, situation is rather different on lawns covered with sacking. The cloth protects the humus layer from being washed off or blown off together with seeds, decreases the evaporation of moisture, and makes it possible for grass germs to root in soil. In addition, slopes designed for lawns are stabilized using special concrete or wooden frameworks.

However, several hectares of damaged land cannot be covered with a cloth. But a protective covering could be dispersed over the soil surface like a fertilizer from an airplane. This is the way offered by ecologists and chemists from the Geological Institute. The scientists developed a polymeric covering "Biorekulat" for restoring vegetation of mine sites. In fact, this is a durable elastic film that if formed after applying an aqueous emulsion of polymer to the soil surface. Such a film effectively stabilizes the surface by gluing small soil particles together, and later they and seeds cannot be carried away by rainwater or wind. At the same time, the polymeric covering is porous, air- and water-permeable, and does not prevent the earth from breathing. Seeds are comfortable under such a film like under an elfin cloak: it saves heat and moisture and smoothens the fluctuations of temperature in soil. This screen is not an obstacle for young plants, which can grow through it easily.

This film itself is rather durable and stays for several years before beginning to disappear, as it is biodecomposable. It is frost- and heat-resistant: from minus forty to plus forty degrees Celsius. In fact, the most important thing is to let the seeds germinate and root the first year. The second year, the sod (grass-covered surface soil held together by matted roots) is formed, which protects soil from erosion and people from dust, and the covering becomes unnecessary. Thus, this method allows us to restore the soil-vegetation cover on a bare ground within two years, whereas a similar natural process would take decades. Besides, this method is ten times cheaper than the usual way of lawn creation. Using the polymeric film, one can succeed in restoring the soil-vegetation cover on the bare ground even without applying either seeds or a fertile ground. In the first case, one relies on the fact that soil always contains some seeds, and grass will appear without any sowing. In the second case, perennial grasses can be planted even on infertile land.

It should be mentioned that the Russian product "Bioreculat" attracted attention of the British known for their passion for ideal lawns. They consider using of this product not only for lawn treatment, but also for healing bare spots on golf-links.

In Russia, this invention was highly appreciated too. Recently, it won the Grand Prix and a gold medal at the Fifth International Salon of Industrial Property "Archimedes".

Olga Maksimenko | alphagalileo

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>