Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown expert connects resilience science and marine conservation

18.02.2008
Brown University marine conservation scientist Heather Leslie will explain how the fast-growing field of resilience science can produce more effective ocean protection policies at the annual meeting of the American Association for the Advancement of Science (AAAS), the world’s largest general scientific society.

Resilience science is the study of how ecosystems resist and respond to disturbances, both natu-ral and man-made. This increasingly influential area of environmental science is affecting marine conservation efforts from the Gulf of Maine to the Great Barrier Reef.

At the meeting, held in Boston, Leslie will explain resilience science and its impact in a Feb. 17, 2008 symposium titled “Embracing Change: A New Vision for Management in Coastal Marine Ecosystems.” The symposium runs from 8:30 to 11:30 a.m. in Room 313 of the Hynes Conven-tion Center. Leslie will also attend a Feb. 14, 2008 press briefing on the topic of marine ecosys-tem threats. The briefing kicks off at 1 p.m. in Room 112 of the Hynes Convention Center.

The Sharpe Assistant Professor of Environmental Studies and Biology at Brown, Leslie will dis-cuss at the symposium how ocean ecosystems are increasingly threatened by overfishing, pollu-tion, habitat loss, climate change and coastal development. Understanding why some ecosystems resist these shocks, and continue to deliver benefits such as plentiful fish and pristine beaches, and how others collapse is the subject of resilience science – a budding branch of study that combines approaches from both the life and social sciences.

“Resilience science examines how human and natural forces come together to affect an ecosys-tem’s ability to resist, recover or adapt to disturbances,” Leslie said. “That knowledge can be di-rectly applied to conservation policies – policies that can better protect the oceans.”

At the AAAS symposium, Leslie will explain key elements of resilience science. These include the recognition of the connections between marine systems and human communities, the mainte-nance of diversity in marine ecosystems and economies, and the importance of monitoring of the dynamic ecological processes, such as the rate of plankton production in the upper ocean, that create large-scale ecological patterns.

Leslie will also discuss how conservation policies based on resilience science are showing prom-ise around the world and across the United States, most notably in the Chesapeake Bay. Restora-tion of the Bay is underway – evidenced by oyster sanctuaries and eelgrass seeding – to restore lost diversity and increase future resilience.

“Viewing the world through a resilience lens means embracing change and acknowledging the tight connections between humans and nature,” Leslie said. “The way forward will require em-bracing change at many levels — in societal expectations, in business practices, in resource man-agement — to adapt to an ever-changing environment. Resilience science can show the way for-ward, creating more robust marine ecosystems and thriving human communities.”

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Project provides information on energy recovery from agricultural residues in Germany and China
13.02.2020 | Deutsches Biomasseforschungszentrum

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>