Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The severity of side-effects after salmon vaccination depends on the antigen composition

10.01.2008
During the course of his doctoral studies, Stephen Mutoloki examined tissue reactions of salmon to oil-based vaccines and elucidated the components that play a significant role in the development of these reactions.

Vaccines are used in aquaculture to avoid outbreaks of infection from bacteria and viruses. If given at the start of the sea-water phase, oil-based vaccines provide protection against bacterial infection for the entire life in the animal.

However, oil-based vaccines produce local side-effects in the form of pigmentation and adhesions between internal organs, which in some cases are severe enough to reduce the carcase quality at slaughter. The underlying mechanisms of side-effect development are little known.

Stephen Mutoloki discovered that the reaction to the vaccine, and especially to the bacterial component of the vaccine, comes in several “waves”. These waves consist of cells that migrate to the injection site, and in the van of these is the “rapid-response troop”, the neutrophilic granulocytes. These are followed by the “clean-up team”, the macrophages, and later still by the cells that provide the actual protection against disease later in life, the lymphocytes.

This is the same sequence one finds in a natural infection and is the result of a collaboration between the processes of inflammation and of immunity. How aggressive the reaction within the tissue is, depends on how many granulocytes that are involved and how many clean-up cells arrive.

The main findings in Dr. Mutoloki’s work show that the species has a lot to say for how effectively the “clean-up” progresses. The rainbow trout has in general more effective cleaning-up cells, while the Atlantic salmon does a poorer job with a correspondingly greater and longer-lasting tissue reaction. The clean-up phase is also affected by the vaccine’s composition, that is, the more unrefined a vaccine, the more inflammatory cells that will accumulate and the greater the tissue reaction.

The type of antigen in the vaccine is also significant. Moritella viscosa is, for example, more difficult to clean up after than Aeromonas salmonicida. And if the vaccinated fish uses more resources to clean up than to create immunity against future infections, the tissue relation may become too dominating and produce unwanted side-effects.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no/105/English/7899/The-severity-of-side-effects-after-salmon-vaccination-depends-on-the-antigen-composition/

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>