Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overgrazing accelerating soil erosion in northern Mexico

08.01.2008
Every year in the world an estimated 20 million hectares of arable land are rendered infertile simply owing to water-induced erosion. It is therefore crucial to understand how these processes arise in order better to protect the layer of a few tens of metres of fertile soil essential for plant growth and therefore for sustaining agriculture. In the North of Mexico, about ten years ago IRD teams studied the erosion phenomenon which affects this region where pastoral activities and tree felling aggravate the process.

As part of field studies conducted from 1993 to 2000 on the mountain crests of the western Sierra Madre and in the more arid regions in the south of the Chihuahua Desert, the scientific team established a soil classification according to climatic and topographic characteristics. They used a rainfall index type hydrological model which gives real-time simulation of the humidity state of soil on the basis of a range of parameters including soil humidity, runoff rate, water storage capacity.

This measurement method also takes into account the volume of rain collected at a given moment and the time lapsed since it fell. This model, named NAZASM, with reference to the Rio Nazas drainage basin where it was first used in 1999, provides a means of classifying each soil type according to the processes that allow infiltration of water but also its runoff on the surface. From pine and oak forests of the Sierra’s mountains, to the bare expanses of the Chihuahua Desert located at 1000 m altitude, the rainfall was determined, varying locally from 1000 mm to less than 200 mm. The NAZASM model led to the assessment that only the drainage basins of the sub-humid zone of the western Sierra Madre had the capacity to let the rainwater pass through the soil before part of it could flow into water courses.

The soil degradation associated with overgrazing could substantially reduce this storage capacity. In the other, arid or semi-arid type terrains studied, the soil infiltration capacity was most often lower than the rainfall rate. That is translated by the formation of runoff on the soil surface and this accentuates the process of water erosion.

Other more local-scale results presented by the same team showed that surface-type erosion, or sheet erosion, which applies to all the surface considered, was the cause of almost all the soil losses affecting the western Sierra Madre. The proportion of fertile land lost by flooding-induced gully erosion was estimated at 2% of total erosion, even though a large amount of the material dragged down from the mountain slopes themselves were in fact transported through the gullies so formed. These original measurements suggest that, in this northern area of Mexico, it is the soils of all the drainage slopes that lose several millimetres every year. In this part of the country, with its steep slopes, this process was found to be the consequence of livestock’s trampling of vegetation combined with the sheer intensity of rainfall events. The intense grazing pressure exerted by cattle, which eat mainly grassy and herbaceous plants, means that the unpalatable species that the livestock leave alone no longer have any competition and eventually take over the whole of the space. This overgrazing therefore causes the grassland ecosystem to be replaced by thorn scrub and pine, less effective for holding in place the fine layer of fertile soil.

In the space of around ten years, pressure from ever-growing herds and tree-felling for timber have contributed greatly to changes in the landscape. In the western Sierra Madre, practically all the pasture land located at 500 to 2500 m altitude are already degraded. Yet paradoxically it was in the valley bottoms where there was least rainfall that sheet erosion was most intense. These zones were also the site of the most degraded pastures and where runoff was strongest.

These observations provide scientists with a better understanding of the functioning of soil and the erosion processes in regions like northern Mexico where it is becoming especially intense. This type of approach offers a better way of assessing soil degradation. It should in the long term offer easier identification of the places most vulnerable to erosion and runoff, a capability useful for devising control measures to limit certain detrimental practices such as tree clearance or over-intense grazing practices.

Grégory Fléchet - DIC

(1) These research studies were conducted jointly with the Mexican institutions: CENID RASPA (Centro Nacional de Investigación Disciplinaria en la Relación Agua Suelo Planta Atmósfera, and the research centre of INIFAP (Instituto Nacional de Investigación Forestal y Agro-Pecuaria) in Gomez Palacio (Durango State)

(2)In geology, a soil corresponds to the layer of fertile earth resulting from weathering of a surface rock under the influence of climate, vegetation or living organisms.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2007/fas281.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>