Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon sink capacity in northern forests reduced by global warming

03.01.2008
Loosing more than we gain from Autumn warming in the north

An international study investigating the carbon sink capacity of northern terrestrial ecosystems discovered that the duration of the net carbon uptake period (CUP) has on average decreased due to warmer autumn temperatures.

Net carbon uptake of northern ecosystems is decreasing in response to autumnal warming according to findings recently published January 3rd, in the journal Nature. The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring. Over the past two decades autumn temperatures in northern latitudes have risen by about 1.1 °C with spring temperatures up by 0.8 °C.

Many northern terrestrial ecosystems currently lose carbon dioxide (CO2) in response to autumn warming, offsetting 90% of the increased carbon dioxide uptake during spring. Using computer modeling to integrate forest canopy measurements and remote satellite data, researchers found that while warm spring temperatures accelerate growth more than soil decomposition and enhance carbon uptake, autumn warming greatly increases soil decomposition and significantly reduces carbon uptake.

Lead author of the study, Dr. Shilong Piao from the LSCE, UMR CEA-CNRS,in France says “If warming in autumn occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon will diminish in the future”.

Philippe Ciais, also a member of the research team and a scientist from the Global Carbon Project says “The potentially rapid decline in the future ability of northern terrestrial ecosystems to remove atmospheric carbon dioxide would make stabilization of atmospheric CO2 concentrations much harder than currently predicted”.

This study was supported by European Community-funded projects ENSEMBLES and CARBOEUROPE IP, and by the National Natural Science Foundation of China as well as by Fluxnet-Canada, which was supported by CFCAS, NSERC, BIOCAP, MSC and NRCan.

“Net carbon dioxide losses of northern ecosystems in response to autumn warming”
Shilong Piao1, Philippe Ciais1, Pierre Friedlingstein1, Philippe Peylin2, Markus Reichstein3, Sebastiaan Luyssaert4, Hank Margolis5, Jingyun Fang6, Alan Barr7, Anping Chen8, Achim Grelle9, David Hollinger10, Tuomas Laurila11, Anders Lindroth12, Andrew D. Richardson13 & Timo Vesala14

1LSCE, UMR CEA-CNRS, Bâtiment 709, CE, L’Orme des Merisiers, F-91191 Gif-sur-Yvette, France. 2Laboratoire de Biogéochimie Isotopique, LBI, Bâtiment EGER, F-78026 Thiverval-Grignon, France. 3Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany. 4Department of Biology, University of Antwerp, Universiteitsplein 1, 2610Wilrijk, Belgium. 5Faculté de foresterie et de géomatique, Université Laval, Sainte-Foy, Quebec G1K 7P4, Canada. 6Department of Ecology, Peking University, Beijing 100871, China. 7Climate Research Division, Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada. 8Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA. 9Department of Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden. 10USDA Forest Service Northern Research Station, 271 Mast Road, Durham, New Hampshire 03824, USA. 11Finnish Meteorological Institute, FIN-00101 Helsinki, Finland. 12Department of Physical Geography and Ecosystems Analysis, Lund University, SE-22362 Lund, Sweden. 13Complex Systems Research Center, University of New Hampshire, Durham, New Hampshire 03824, USA. 14Department of Physics, University of Helsinki, FIN-00014 Helsinki, Finland.

Dr Phillip Ciais | alfa
Further information:
http://www.nature.com/nature
http://www.globalcarbonproject.org/news/AutumnWarming.htm

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>