Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers use NASA satellites to improve pollution modeling

19.12.2007
Detecting pollution, like catching criminals, requires evidence and witnesses; but on the scale of countries, continents and oceans, having enough detectors is easier said than done.

A team of air quality modelers, climatologists and air policy specialists at Arizona State University may soon change that. Under a grant from the Environmental Protection Agency, they have developed a new way to close the gaps in the global pollution dragnet by using NASA satellite data to detect precursors to ozone pollution, also known as smog.

The technique, devised with the aid of health specialists from University of California at Berkeley, uses satellite data to improve ASU’s existing computer models of ozone events — filling in the blanks while expanding coverage to much larger areas.

“The satellite data provides information about remote locations,” said Rick Van Schoik, director of ASU’s North American Center for Transborder Studies. “It gives us data from oceans and about events from other countries with less advanced monitoring capabilities, such as Mexico.”

Such information can have vital implications for health, especially in southern Arizona. According to Joe Fernando, a professor in ASU’s department of mechanical and aerospace engineering and the environmental fluid dynamics program, who worked on the project, ozone is a key ingredient in urban smog, which affects even healthy adults and presents a special health risk to small children, the elderly and those with lung ailments. It can cause shortness of breath, chest pains, increased risk of infection, aggravation of asthma and significant decreases in lung function. Some studies have linked ozone exposure with death by stroke, premature death among people with severe asthma, cardiac birth defects and reduced lung-function growth in children.

This new satellite-assisted model could allow researchers to see an ozone plume forming and work with communities to head off health effects in advance.

“Before, if there were precursors of an ozone event, we couldn’t see them — we just got hit by the pollution,” Van Schoik said. “Now, we can watch the event build.”

Improved oceanic coverage could also help with monitoring one of the largest sources of pollution along the coasts: oceanic ships, which are covered only by international treaties and are not regulated by the EPA.

Ozone forms when nitrogen oxides and volatile organic hydrocarbons — byproducts of fossil fuel pollution — react with one another in the presence of sunlight and warm temperatures, resulting in a chain reaction. This chain reaction can mean that large amounts of ozone can bloom from even moderate amounts of nitrogen oxides.

Scientists can detect ozone by detecting the absorption of specific wavelengths of light, but they have had to rely on ground data and radiosondes — atmospheric instrumentation bundles sent up on weather balloons — to surmount the large uncertainties associated with the technique.

“This is the reason comparisons were made between low-level ozone direct measurements with those obtained from satellites,” said Fernando. “The importance is that the satellite data were used to improve model performance — that this work will lead to better model predictions and hence superior forecasting of ozone and improved health warnings.”

The satellites currently provide data every 16 days. Each square, or pixel, of the grid they cover is five by eight kilometers, but Van Schoik said that the resolution would continue to improve.

“NASA has developed tools that are starting to fulfill much of the promise that we hoped for when NASA began engaging in global environmental monitoring,” he said. “With each member of our team adding their own expertise, we are seeing just how powerful that can be.”

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>