Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does working for a better environment really lead to peace?

13.12.2007
Climate advocate Al Gore accepted the Nobel Peace Prize this December 10th. New Norwegian research suggests, however, that there is no connection between environmental crises and armed conflict.

”Extensive climate changes may alter and threaten the living conditions of much of mankind. They may induce large-scale migration and lead to greater competition for the earth’s resources. Such changes will place particularly heavy burdens on the world’s most vulnerable countries. There may be increased danger of violent conflicts and wars, within and between states.”

A broader concept of peace

This is an excerpt from the Nobel Committee’s explanation for the award of the 2007 Nobel Peace Prize, shared equally by the former US Vice President Al Gore Jr. and the IPCC (Intergovernmental Panel on Climate Change).

The Nobel Committee interprets “working for peace” as including saving the Earth’s environment. Researchers, advocacy groups, politicians and the media have all highlighted local resource crises as the reason for a host of armed conflicts around the globe. The premise underlying the Nobel Committee’s expanded definition of peace is that there is a causal connection between natural resource shortages and violent conflict.

But is that true? Not according to a new study from the Norwegian University of Science and Technology (NTNU).

Surprising results

A series of case studies in recent years from areas stricken by conflict has helped develop a theoretical basis for the claim that natural resource scarcity leads to armed conflict. Darfur, Sudan, is a recent example of this presumed causal connection, with Rwanda, Haiti and Somalia as other examples.

Helga Malmin Binningsbø, Indra de Soysa and Nils Petter Gleditsch, from NTNU’s Department of Sociology and Political Science, looked at the environmental pressures in 150 countries in the period from 1961 to 1999. By using an internationally recognized technique for measuring a country’s environmental sustainability –“The Ecological Footprint” – the researchers were able to compare these numbers with statistics on armed conflict during the same period.

Their conclusion may seem paradoxical—lands where resources are heavily exploited show a clear connection to a lack of armed conflict. Or alternatively, nations troubled by war during the research period had lower exploitation rates of their natural resources. The findings give researchers solid empirical support for stating that environmental scarcity is not the reason behind violent conflict.

--A higher Ecological Footprint is negatively correlated with conflict onset, controlling for income effects and other factors, the researchers say in their article, published in the peer-reviewed journal Population and Environment.

-- Of course people fight over resources, that’s not our argument. We believe, rather, that we have a strong scientific case against the Neomalthusian model, says Binningsbø.

Darfur

-- I have seen with my own eyes how climate change and resource scarcity, particularly when it comes to water and grazing lands, can fuel tensions, says Jan Egeland, director of the Norwegian Institute of International Affairs (NUPI).

Egeland was formerly the UN’s Under-Secretary-General for Humanitarian Affairs and Emergency Relief Coordinator, responsible for refugee issues, and has seen first-hand many conflicts across the globe that surely could have been caused by environmental crises.

Egeland has previously stated that the Darfur conflict was the result of an environmental crisis. He is now a little more uncertain of the causal connection.

-- That resource scarcity in specific areas strengthens existing conflicts is something that I have no doubt of, he says. (But) I still believe that this year’s peace prize award was sound.

Resources and populations

In their article, the NTNU researchers challenge a popular school of thought, the Neomalthusian school. They see climate change and the over consumption of natural resources as a modern day illustration of Thomas Malthus’ theory.

Thomas Malthus (1766-1834) developed the well-known theory that a country’s food production cannot keep up with its population growth over the long run. Starvation, war and early death would regulate the balance between food availability and population numbers. That means that the bulk of the population would live a minimalist existence.

But Malthus, who lived at the end of the 1700s, couldn’t predict later technological breakthroughs, such as the Green Revolution, which have altered his bleak global caloric intake equation.

The Ecological Footprint

Techniques developed by the Global Footprint Network, an international research network, form the underpinnings for the NTNU group’s research numbers and methods.

-- The Environmental Footprint describes a country’s resource consumption compared to its ecological capacity, explain Binningsbø and de Soysa.

The Ecological Footprint measures humankind’s exploitation of natural resources. In other words, how much do you have, and how much do you use?

The method is widely used as a measurement technique, but has also been criticised. Researchers have argued that the method can only be applied on a global basis, in as much as countries trade with each other, and therefore aren’t necessarily solely dependent on their own natural resources.

By: Tor H. Monsen

”Global Footprint Network”: http://www.footprintnetwork.org/

“Population and Environment”:http://www.springerlink.com/content/105738/

Nina Tveter | alfa
Further information:
http://www.footprintnetwork.org/

More articles from Ecology, The Environment and Conservation:

nachricht Marine oil snow
12.06.2019 | University of Delaware

nachricht Climate driving new right whale movement
29.05.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>