Rapid changes in the Arctic ecosystem: Study published in Science Express

Several groups take possession of the sea ice habitat of every ice station: water samples from the melting pools, the ice itself and the water beneath – everything is investigated for plants, animals and microorganisms. © Mar Fernandez, Alfred Wegener Institute<br>

When the ice melts, as was the case during the ice minimum in 2012, these algae sink rapidly to the bottom of the sea at a depth of several thousands of metres. Deep sea animals such as sea cucumbers and brittle stars feed on the algae, and bacteria metabolise what’s left, consuming the oxygen in the sea bed.

This short-term reaction of the deep sea ecosystem to changes in sea ice cover and ocean productivity has now been published in the scientific journal Science by a multidisciplinary team of researchers around Prof. Dr. Antje Boetius from the Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research.

Scientists and technicians from twelve nations travelled the Central Arctic on the research icebreaker Polarstern in the late summer of 2012. In and under the ice they used a large number of ultra-modern research devices and methods such as camera-guided sampling devices and an under-ice remotely operating vehicle (ROV). Prof. Antje Boetius, who leads the Helmholtz-Max Planck Research Group on Deep-Sea Ecology and Technology has a first answer to the all-important question of how the Arctic is changing due to warming: “Far quicker than has so far been expected! The seabed at a depth of more than 400 metres was littered with clumps of ice algae which had attracted lots of sea cucumbers and brittle stars“, explains the microbiologist.

The algal deposits with diameters of up to 50 centimetres covered up to ten per cent of the seabed. The researchers were able to count them using an Ocean Floor Observation System (OFOS). Also for the first time in the ice-covered Arctic, the Helmholtz-Max Planck researcher Dr. Frank Wenzhöfer was able to measure the bacterial and faunal oxygen consumption directly in the deep sea using micro-sensors. And life was thriving under the algae cover: bacteria had started to decompose the algae as evident from a greatly reduced oxygen content in the sediment. By contrast, the sea bed in the adjacent algae-free areas was aerated down to a depth of 80 centimetres and had virtually no algal residues.

But where do the large quantities of algae on the deep-sea floor come from? Plants cannot grow in 4000 m water depth because there is no light. Using an ROV, the researchers found lots of remains of ice algae everywhere under the sea ice. “It has been known for some time that diatoms of the type Melosira arctica can form long chains under the ice. However, such a massive occurrence has so far only been described for coastal regions and old, thick sea ice “, explains Boetius. When planning the expedition three years ago the researchers proposed the hypothesis that ice algae could grow faster under the thinning sea ice of the Central Arctic. And the observations now published in the scientific journal Science support their hypothesis: at 45 per cent, the ice algae were responsible for almost half of the primary production in the Central Arctic Basin. The remaining primary production was attributable to other diatoms and nanoplankton which live in the upper layers of the water column.

Normally, the small phytoplankton cell sinks only very slowly through the water column and is largely consumed already within the ocean surface layer. By contrast, the long chains of algae formed by Melosira arctica are heavy and can quickly sink to the bottom of the sea. In this way they exported more than 85 per cent of the carbon fixed by primary production from the water surface to the deep sea in summer 2012, just before the expedition. The researchers suppose that the algae had actually grown recently because they found only one-year old ice in the Central Arctic, and because the algae extracted from the guts of sea cucumbers were still able to photosynthesise upon return to the ship’s laboratory. The good nutritional state of the sea cucumbers was also evidence of the massive food supply: the zoologist Dr. Antonina Rogacheva of the P.P. Shirshov Institute of Oceanology found that the animals were larger than normal and with highly developed reproductive organs – an indication that they had been eating abundantly for some two months.

The sea ice physicists on board investigated why ice algae are able to thrive beneath the thinning Arctic sea ice, and how they may also lose their habitat quickly due to the increasing ice melt. They determined the ice thickness with an electromagnetic probe dragged by a helicopter and by ice drillings. They also used an underwater robot (ROV) to view the ice from below and to measure how much light penetrates through the ice. Dr. Marcel Nicolaus from the Alfred Wegener Institute explains: “At the end of the summer we still found a lot of ice algae remains, and could quantify them by using an under-ice ROV. The increasing cover by melt ponds permits more light to permeate the ice, and makes the algae grow faster.” (see also Press Release dated 15 January 2013: http://bit.ly/V1BwmJ). However, since the ice has become so much thinner in recent years, and the Arctic so much warmer, the ice algae will melt out more quickly from the ice and sink.

“We were able to demonstrate for the first time that the warming and the associated physical changes in the Central Arctic cause fast reactions in the entire ecosystem down to the deep sea“, summarises lead author Boetius. The deep sea has so far been seen as a relatively inert system affected by global warming only with a considerable temporal delay. The fact that microbial decomposition processes fueled by the algal deposits can generate anoxic spots in the deep sea floor within one season alarms the researcher: “We do not know yet whether we have observed a one-time phenomenon or whether this high algal export will continue in the coming years.“ Current predictions by climate models assume that an ice-free summer could occur in the Arctic in the next decades. Boetius and her team warn: “We still understand far too little about the function of the Arctic ecosystem and its biodiversity and productivity, to be able to estimate the consequences of the rapid sea-ice decline.“

The title of the original publication is:
Antje Boetius, Sebastian Albrecht, Karel Bakker, Christina Bienhold, Janine Felden, Mar Fernández-Méndez, Stefan Hendricks, Christian Katlein, Catherine Lalande, Thomas Krumpen, Marcel Nicolaus, Ilka Peeken, Ben Rabe, Antonina Rogacheva, Elena Rybakova, Raquel Somavilla, Frank Wenzhöfer, and the RV Polarstern ARK-XXVII/3-Shipboard Science Party: Export of algal biomass from the melting Arctic sea ice. Science Express 14 February 2013. DOI: 10.1126/science.1231346 (available online after the embargo has lifted). [http://www.sciencemag.org/lookup/doi/10.1126/science.1231346]

The work was partly financed by the Advanced Investigator Grant ERC „Abyss“ from the European Research Council.

Participating institutions:
Alfred Wegener Institute for Polar and Marine Research, 27515 Bremerhaven, Germany
Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
MARUM University Bremen, 28334 Bremen, Germany
FIELAX Gesellschaft für wiss. Datenverarbeitung mbH, 27568 Bremerhaven, Germany
NIOZ Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, The Netherlands
P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia.

Full list of the RV Polarstern ARK-XXVII/3 Shipboard Science Party can be found in the original publication.

Your scientific contacts are:
Prof. Dr. Antje Boetius, Helmholtz-Max Planck Research Group on Deep-Sea Ecology and Technology (phone: +49 0175 2475301, e-mail: Antje.Boetius@awi.de)
Dr. Frank Wenzhöfer (phone: +49 471 4831-2182, e-mail: Frank.Wenzhoefer@awi.de)
Dr. Marcel Nicolaus (phone: +49 471 4831-2905; e-mail: Marcel.Nicolaus@awi.de)
Your contact person in the Communications Department is Dr. Folke Mehrtens (phone +49 471 4831-2007, e-mail: Folke.Mehrtens@awi.de ).

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/#!/AWI_de) and Facebook (http://www.facebook.com/AlfredWegenerInstitut) to obtain all current news and information on everyday stories from the life of the Institute.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Media Contact

Ralf Röchert idw

More Information:

http://www.awi.de

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors