Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protea plants help unlock secrets of species 'hotspots'

30.12.2008
New species of flowering plants called proteas are exploding onto the scene three times faster in parts of Australia and South Africa than anywhere else in the world, creating exceptional 'hotspots' of species richness, according to new research published today in Proceedings of the National Academy of Sciences (PNAS).

Proteas are best known as the national symbol of South Africa. The international team behind today's new study created an evolutionary 'family tree' of all 2,000 protea plant species on Earth - the majority of which are found in South Western Australia (SWA) and the Cape Floristic Region (CFR) of South Africa. This 'family tree' enabled the researchers to examine how these and other regions of the planet with Mediterranean-style climates have become so-called 'biodiversity hotspots'.

Until now, scientists have not known exactly why such large numbers of plant and animal species live in these Mediterranean hotspots. They are places of significant conservational importance which, like the rainforests, contain some of the richest and most threatened communities of plant and animal life on Earth.

The research published today provides the first conclusive proof that plant species in two of these hotspots are evolving approximately three times faster than elsewhere on the planet. The study dates this surge in protea speciation as occurring in the last 10-20 million years, following a period of climate change during which SWA and the CFR became hotter, drier, and more prone to vegetation fires.

Dr Vincent Savolainen, a biologist based at Imperial College London and the Royal Botanic Gardens, Kew, one of the authors of the new study, explains its significance, saying:

"Something special is happening in these regions: new species of proteas are appearing notably faster than elsewhere, and we suspect this could be the same case with other plant species too. This study proves that the abundance of different kinds of proteas in these two areas isn't simply due to normal rates of species diversification occurring over a long period of time.

"This is the first step towards understanding why some parts of the planet with a Mediterranean-style climate have become species-rich biodiversity hotspots."

Dr Savolainen and his colleagues believe that climatic changes millions of years ago could be one of the factors that prompted the protea plants' 'hyperdiversification' in SWA and the CFR. As these two regions became hotter, dryer, and prone to seasonal fires, proteas - which are drought-resistant and able to re-grow easily after a fire - would have survived, thrived and diversified into new species when faced with less competition for resources from less hardy plants.

Dr Savolainen concludes: "South Western Australia and the Cape Floristic Region of South Africa are areas of great interest to both evolutionary biologists and conservationists, because they contain such a rich profusion of life but are under threat from mankind's activities.

"Understanding more about the evolutionary history of these biodiversity 'hotspots' is important because it can help make conservation efforts more efficient."

Proteas live in the southern hemisphere and come in many different shapes and sizes, from 35-metre-tall trees to low growing shrubs. All proteas have leathery leaves and cup-shaped groupings of small, brightly coloured flowers that resemble thistles.

The Cape Floristic Region of South Africa and South Western Australia are two of five areas on Earth with a Mediterranean-style climate which have been designated 'biodiversity hotspots' by Conservation International. The others are: central Chile, California, and the mediterranean basin.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>