Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What are the prospects for sustaining high-quality groundwater?

20.12.2011
Intensive agriculture practices developed during the past century have helped improve food security for many people but have also added to nitrate pollution in surface and groundwaters. New research has looked at water quality measurement over the last 140 years to track this problem in the Thames River basin.

The NERC-funded study, led by the University of Bristol's Department of Civil Engineering, has looked at nitrate transport from agricultural land to water in the Thames basin. The team used a simple model to estimate the amount of nitrate able to leach from soils to the groundwater based on land use practices along with an algorithm that determined the route nitrate would take to reach surface or groundwater from agricultural areas.

The Thames River catchment provides a good study example because the water quality in the river, which supplies drinking water to millions of people, has been monitored for the past 140 years, and the region has undergone significant agricultural development over the past century.

The study found that nitrate concentrations in the Thames rose significantly during and after World War II to about double their previous level, then increased again in the early 1970s. Nitrite concentrations have remained at that high level even though nitrate from inputs from agriculture declined from the late 1970s to early 2000s.

The researchers observed it takes some time for nitrate to reach the river, and their analysis suggests that the jump in nitrate concentrations from 1968 to 1972 is due to the delayed groundwater response to ploughing of permanent grasslands during World War II.

Dr Nicholas Howden, Senior Lecturer in Water in the Department of Civil Engineering, who led the research, said: "Balancing the needs for agriculture and clean groundwater for drinking requires understanding factors such as the routes by which nitrate enters the water supply and how long it takes to get there.

"Our results suggest it could take several decades for any reduction in nitrate concentrations of river water and groundwater, following significant change in land management practices."

Co-author of the research paper, Dr Fred Worrall in the Department of Earth Sciences at Durham University, added: "The 60s and 70s saw a gradual intensification of food crop production and consequent nitrate release from the land. If your input is dispersed, your output is dispersed; if your input is sharp, your output is sharp. The aquifer is just transporting it; it's not processing it. The nitrate comes through as a pulse."

Co-author, Professor Tim Burt in the Department of Geography at Durham University, said: "You can work out the budget, and there is a phenomenal amount of nitrogen accumulating somewhere in the Thames basin. We don't know where and we don't know in what form, but it represents a potential legacy for a long time. The effects of land-use changes can take decades to filter through the river basin and this has major implications for policies to manage rivers."

The researchers found that any solution to the nitrate issue will require a long-term vision for water-quality remediation. In terms of sustainable groundwater, there seem to be no ''quick fixes'' and if groundwater nitrate concentrations continue to rise in the UK the worst may be yet to come.

The study could help water and land management planners identify practices that best preserve both agricultural production and water quality.

Paper: Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?, Nicholas J K Howden, Tim P Burt, Fred Worrall, Simon Mathias, and Mick J Whelan, Water Resources Research, Vol 47, 12 November, 2011

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Reduced off-odor of plastic recyclates via separate collection of packaging waste
31.03.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Study suggests LEGO bricks could survive in ocean for up to 1,300 years
17.03.2020 | University of Plymouth

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>