Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using the Potential of Waste Heat

09.12.2013
Siemens researchers analyze how different components of the future energy system can be combined in an optimized way.

In its latest issue the research magazine "Pictures of the Future" reports about the chances of this multi modal energy system. Scientists of Siemens' global research Corporate Techlology want to combine diverse energy sources, such as oil, gas, wind, solar, biomass, and waste heat in a way that ensures they produce electricity, heat, cooling, and potable water in the most efficient and environmentally friendly manner possible.



In most cases, only the individual aspects of such systems were examined until now - for example, approaches for feeding in energy from renewable sources. Now the researcher work with grids that consist of many components and study their interaction and the effect they have on overall stability.

One aspect the researchers are particularly interested is the waste heat from machines and other industrial equipment. Today, waste heat in the low-temperature range in particular is rarely used in an economically viable manner. However, this heat contains valuable energy that can be used to recycle waste water into drinking water, for example. With this in mind, Siemens researchers in Erlangen have developed a demonstration plant which uses waste heat within the temperature range of 70 to 120 degrees Celsius to vaporize wastewater. The resulting steam is channeled into a condenser, where it precipitates in a process that produces pure water and some concentrated wastewater.

In the prototype flows wastewater in from the top through insulated pipes. It then passes through several heat exchangers, where waste heat is used to raise the water's temperature. After that, the wastewater trickles through an evaporator and evaporates. A fan generates an air current that carries the vaporized water upward. The vapor condenses again on the right side, where the condenser is located. The separation is done. To use a minimal amount of electrical energy to transport as much water vapor as possible the temperature distribution and the air volume has to be regulated precisely. The next step could be a pilot facility that would purify 25 cubic meters of water per hour. That would be sufficient to treat the wastewater from bottling processes in the beverage industry. However, the technology can also be used to purify the wastewater generated by brewery processes and oil drilling operations.

The researchers have also built a heat pump that can raise temperatures to a maximum of 140 degrees Celsius - as opposed to the previous limit of 90 degrees. They use a special process fluid for the heat cycle. The new heat pump makes it possible to boost the temperature of industrial waste heat or heat from geothermal sources from between 70 and 90 to 130 degrees Celsius - the norm in district heating systems. The heat could be used to warm buildings.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: Heat Blanket energy source waste heat waste management

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>