Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Populated Puget Sound sees stark shifts in marine fish species

08.05.2015

Forage fish declining, jellyfish booming in most densely developed parts of Puget Sound

The most populated areas of Puget Sound have experienced striking shifts in marine species, with declines in herring and smelt that have long provided food for other marine life and big increases in the catch of jellyfish, which contribute far less to the food chain, according to new research that tracks species over the last 40 years.


Jellyfish blooms rose alongside human population across Puget Sound.

Credit: Washington Department of Ecology/Eyes Over Puget Sound

The parallel trends of rising human population and declining forage fish such as herring and smelt indicate that human influences such as pollution and development may be eroding species that long dominated Puget Sound. In particular, the rise of jellyfish blooms may divert energy away from highly-productive forage species that provide food for larger fish and predators such as salmon, seabirds and marine mammals.

The research by scientists from NOAA Fisheries' Northwest Fisheries Science Center, the University of Washington and the Washington Department of Fish and Wildlife was published in April in Marine Ecology Progress Series.

"On land people see the changes that come with human population increases, but underwater the changes are much harder to discern," said Correigh Greene, a research fisheries biologist at NWFSC and lead author of the new research. "What this tells us is that when you look over time, you can see that the underwater landscape of Puget Sound is changing too."

The scientists mined data from trawl surveys of fish species in Puget Sound in the 1970s and 80s, in some cases salvaging records destined for the recycling bin and converting handwritten data to electronic format. Then they compared those early results to similar results from their own surveys in 2003 and 2011 to detect changes in the abundance and distribution of forage fish species and jellyfish.

They also looked for connections between the changes in species and outside influences such as human population growth, commercial fishing and shifts in climate.

What they found was declines in some species and increases in others. Pacific herring and surf smelt, historically the two most abundant forage fish, declined by as much as two orders of magnitude in the most heavily populated areas of Puget Sound. Sand lance and three-spine stickleback increased across all four Puget Sound sub-basins examined, but these smaller fish species translate into less prey overall for larger fish, birds and marine mammals.

The Puget Sound Partnership cites Pacific herring as an indicator of ecosystem health in Puget Sound.

Jellyfish blooms also rose alongside human population across Puget Sound, with jellyfish-dominated catches jumping three to nine-fold in the same sub-basins where herring and smelt declined. In some cases more than nine of every 10 tows of trawl survey nets in recent years brought in catches dominated by jellyfish.

The shifts suggest that the same disturbed conditions linked to declines in herring and smelt may benefit more opportunistic jellyfish, which then further pressure forage fish by competing with them for food or even consuming their eggs and larvae. But jellyfish offer far less nutrition than the declining forage fish, reducing the food and energy available to species higher on the food chain.

Harvest of forage fish may open new opportunities for jellyfish by reducing competition from other species and human-driven changes in habitat may reduce the productivity of forage fish, scientists suggest. Polluted runoff may also shift prey towards types that jellyfish favor.

The research may also help resolve the mystery of why juvenile salmon survival has declined sharply in Puget Sound. While forage fish may compete with salmon in some circumstances, they also serve as prey for salmon and can help absorb some pressure from predators such as seals that might otherwise consume young salmon. The parallel declines of forage fish and juvenile salmon survival suggests the loss of forage fish may also affect salmon.

"We still have to pin down mechanisms and causes, but there is clearly a compelling pattern of change in Puget Sound food webs that may be linked to human influence," said Casey Rice, a research fish biologist at the NWFSC and co-author of the new paper. "These results are a potent reminder of just how important such field studies are in detecting, diagnosing and managing impacts on natural resources."

Declines in forage fish were most closely related to human population density, while commercial fishing and climate were less important factors, the research found.

The results may help guide habitat protection and restoration by focusing it on less-disturbed parts of Puget Sound that remain important habitat for forage fish, the researchers concluded. The findings also suggest that efforts to rebuild forage fish populations should take into account human pressures that may be driving unrecognized changes in marine ecosystems.

"We were fortunate to find the long-term data that allowed us to detect these changes in Puget Sound," said Lauren Kuehne, a research scientist at the University of Washington and co-author of the research. "This really demonstrates the value of data that may have been collected many years ago for different reasons but helps us see the changes that are affecting ecosystems today."

Michael Milstein | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>