Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patience Pays Off with Methanol for Uranium Bioremediation

25.02.2009
Researchers take advantage of microbial communities to clean up uranium-contaminated ground water and sediment.

The legacy of nuclear weapons and nuclear energy development has left ground water and sediment at dozens of sites across the United States and many more around the world contaminated with uranium.

The uranium is transported through ground water as uranyl (U6+). In one bioremediation strategy, uranium immobilization in contaminated ground water and sediment may be achieved by the addition of organic molecules known as electron donors to stimulate microbial activity.

The microbial community utilizes the electron donors as ‘food’, consuming all of the available oxygen during aerobic respiration. Once the ground water becomes anaerobic, U6+ may be converted to U4+ as UO2, a solid mineral, sequestering the uranium within the sediment. Researchers have been investigating the effectiveness of various electron donors, but have been frustrated by residual U6+ which is not converted to insoluble U4+.

A team of scientists from Oak Ridge National Laboratory has investigated effectiveness of several electron donors for uranium bioremediation in a study funded by the Department of Energy’s Environmental Remediation Sciences Program. Madden et al. report that the particular electron donor chosen affects not only the rate of uranium removal from solution, but also the extent of U6+ conversion to U4+. Results of the study were published in the January-February issue of the Journal of Environmental Quality.

Microcosm experiments containing uranium-contaminated sediment and ground water demonstrated equivalent rapid uranium reduction when amended with ethanol or glucose. In contrast, reduction was delayed by several days when microcosms were amended with methanol. Spectroscopic analyses of uranium oxidation state in stimulated microcosm sediment slurries demonstrated almost complete uranium reduction when methanol was the donor, as compared with less than half reduced using ethanol or glucose. However, addition of methanol did not always result in uranium reduction. These results suggest that the use of donors such as methanol which are not as readily and rapidly coupled to microbial metal reduction may lead to increased stability of the subsurface towards uranium immobilization.

Research is ongoing at Oak Ridge National Laboratory to investigate the effectiveness of various electron donors for long-term uranium immobilization. Further research is needed to understand the coupling between the microbial community and the biogeochemical processes that occur to immobilize the uranium. While previous research has focused on individual groups of bacteria which most efficiently reduce uranium, these results suggest the need for understanding the microbial community system.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/38/1/53.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | EurekAlert!
Further information:
http://www.crops.org

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>