Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patagonian glacier yields clues for improved understanding of global climate change

04.08.2008
Although ice cores obtained from Antarctica have now provided more than 800 000 years’ worth of climate records, analysis of them alone is insufficient for understanding the history of climatic interactions between the diverse regions of the world.

Boreholes drilled during the 1990s on six glaciers in the tropical zone of the Andean Cordillera gave rise to a substantial collection of data on the changes and developments of the tropical climate of the Southern Hemisphere.

However, no investigation of this type had hitherto been performed at mid latitudes, leaving a large gap in documentation on climate. An expedition in 2005 by an IRD team and its partners1 on the San Valentin glacier in the Chilean part of Patagonia demonstrated the potential of that site for exploring climatic variations of the past. The analyses gave the first evidence of influences from Antarctica and the Pacific on the Southern climate of the American continent, thus indicating the complexity of the climate system in this ecologically fragile region. A follow-up to this test study, a borehole made in 2007 on the whole thickness of the glacier, should provide the element that was still missing from the glacier records on the Southern Hemisphere’s climate.

A better understanding of climate variations at planetary scale is one of climate scientists’ crucial concerns. Stable water isotope analysis, the chemistry of ice cores taken from the Arctic and Antarctic polar ice caps and of air bubbles trapped in them now allow a chronology to be drawn up of the climate changes that took place over the past 800 000 years. However, those data, collected at extreme latitudes, are not enough for understanding climatic interactions operating at the scale of the whole Earth or of the most densely populated regions. Similar investigations are needed on glaciers located at lower latitudes. Scientists have therefore since the 1990s been undertaking borehole surveys in the Andean glaciers.

The Andes are particularly suited for sampling climate data concerning the whole of the Southern Hemisphere owing to their high altitudes and N-S orientation. Boreholes on six glaciers of the Andean Cordillera at tropical latitudes have already yielded information on South America’s past climate variability (up to 25 000 years). However, no study of this type had yet been conducted in Patagonia, at mid-latitudes of the Southern Hemisphere.

During a 2005 expedition by an IRD team and its Chilean partners on the San Valentin glacier (Patagonia, 47°S, 4032 m), a 16 m shallow firn core was extracted in order to evaluate this site’s potential as a record of our climate. A borehole at this latitude should provide the element still missing from ice field documentation on the Southern Hemisphere’s climate. Geographically, it is at the interface between the tropics and the South Pole and should contain clues as to how tropical and polar atmospheric circulation influence this region’s climate.

Preliminary ice core analysis revealed that the isotopic and chemical tracers are remarkably well preserved owing to a sufficiently cold ice temperature (-11°C). Dating combining determination of radioactive element levels (tritium, cesium, americium, lead 210) and the number of seasonal cycles of chemical species gave an estimated annual snow accumulation of about 35 cm. With just 16 m of ice the hope was to obtain a climate record for a period of at best a few years, but dating showed that the record in fact went back to the early 1960s. Combination of oxygen isotope ratio determinations with those of hydrogen was then used to estimate the precipitations that feed the San Valentin glacier.

The difference between the isotopic ratios - the deuterium excess - is linked essentially to the temperature of the oceanic source of the precipitation, making it possible to differentiate the air masses coming from the pole, formed above a cold ocean, from those arising over a more temperate ocean like the Pacific. Similarly, a high marine salt concentration in ice means that the precipitation that feeds the glacier arrives with marine air masses, formed over the Pacific. Conversely, a low sodium concentration characterizes continental air masses, which have travelled for a longer time. Patagonia was hitherto thought to be subjected mainly to westerly winds off the Pacific, but this dual ice core analysis yielded the first evidence that this region also comes under the influence of meteorological regimes that arise further south, in the Antarctic (see Figure).

A second drilling expedition conducted on San Valentin in 2007 gave the team the opportunity to drill through the entire 122 m thickness of the glacier. The first investigations on this second ice core suggest that it contains a climate record of several thousand years. By cross-referring the information contained in this unique core with those already obtained for the glaciers lying further North on the Cordillera, it could therefore be possible to trace the climate changes in all the whole of the Southern Hemisphere during the past few thousand years and thus better anticipate its reactions to global climate variations.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2008/fas300.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>