Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ORNL tool gets handle on cropland CO2 emissions

11.02.2009
For the first time, farmers have data that tracks at the county level on-site and off-site energy use and carbon dioxide emissions associated with growing crops in the United States.

This information is vital for examining changes in cropland production and management techniques and could play an even bigger role as more land is devoted to bioenergy crops, said Oak Ridge National Laboratory's Tristram West, lead author of a paper published on line in the Journal of Environmental Quality.

"By looking at changes in energy consumption and CO2 emissions that take place with conventional and alternative crop production, we can do a better job of measuring the effects of various carbon sequestration strategies," West said. "This information can also contribute to future policy directions for energy use and agricultural production."

West and co-authors at the University of Tennessee, Kansas State University and ORNL looked at data from 1990 to 2004 and calculated energy consumption and CO2 emissions from fossil fuel combustion associated with U.S. cropland production. For this project they used a combination of independent survey data, national inventory data, established energy consumption parameters for field-scale operation budgets and CO2 emissions coefficients.

The researchers used a number of other resources, including the University of Tennessee's Agriculture Budget System, which consists of more than 3,500 conventional and alternative management practices for corn, soybean, wheat, sorghum, barley, oat, rice, cotton and hay. As of 2006 these nine crops accounted for about 96 percent of total crop production in the U.S.

On-site energy use and emissions result from fossil fuel combustion that occurs on the farm. Off-site energy and emissions result from fossil fuel combustion linked to the production and transport of fertilizers, pesticides and seeds. Off-site emissions also include those from power plants that produce electricity used on the farm.

The researchers were particularly interested in variations in energy consumption that occur when field management strategies change. For example, they found that the adoption of reduced tillage practices from 1990 to 2004 resulted in a net fossil emissions reduction of 8.8 million metric tons of CO2. Above-average rainfall in 1993 caused fields to be flooded in Minnesota, Iowa, Missouri, Kansas and Nebraska. As a result, farmers planted fewer crops and CO2 emissions fell.

"Changes in agriculture policy and extreme weather events influence agricultural land use and subsequent energy consumption and CO2 emissions associated with crop production," West said.

Looking at the nation's total CO2 picture, less than 2 percent of the 6,090 million metric tons is the result of farming activities. Electricity generation is the largest source of emissions followed by transportation, industrial, residential and commercial use.

Among the findings was that energy use and emissions do not always change proportionately with the area of cropland in production. Instead, they vary by crop and management practices. Researchers also found that on-site emissions can be reduced by half for some crops if farmers change from conventional tillage to no-till.

This study did not take into account nitrogen oxide emissions from the use of nitrogen fertilizers. It did, however, consider CO2 emissions from the production of fertilizer. Those are included in the off-site estimates.

Another key aspect of the project is that the data provide a spatial distribution of carbon flux, which will allow researchers to compare this information to atmospheric measurements that are part of the North American Carbon Program (http://www.nacarbon.org/nacp/).

The authors conclude the paper by saying, "Through continued analyses, we will have a better understanding of how carbon dynamics in U.S. agriculture are being impacted by changes in land cover and land management."

The research was funded by the Department of Energy's biomass program, within the Office of Energy Efficiency and Renewable Energy and the Office of Biological and Environmental Research within the Office of Science. Additional resources were contributed by NASA. Energy and emissions data from U.S. cropland production are archived with the Carbon Dioxide Information Analysis Center (http://cdiac.ornl.gov/carbonmanagement/cropfossilemissions).

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy. The Journal of Environmental Quality (http://jeq.scijournals.org) is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy, Crop Science Society of America and the Soil Science Society of America.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>