Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is organic farming good for wildlife? – It depends on the alternative...

07.09.2010
Even though organic methods may increase farm biodiversity, a combination of conventional farming and protected areas could sometimes be a better way to maintain food production and protect wildlife.

The findings come from a study of butterfly populations in UK landscapes by scientists at the Universities of Leeds and York. They found that organic farms have more butterflies than conventional farms, but that a conventional farm plus an area specifically managed for wildlife could support more butterflies, and produce the same amount of food, from the same area of land. However, the wildlife area would have to be similar in quality to a nature reserve, rather than similar to an uncultivated field margin.

The study is the first to seek to establish the trade-off between the most efficient use of farmland and the most effective way to conserve wildlife in our countryside and has important implications for how agricultural land in the UK should be managed.

The research, which involved scientists from the Institute of Integrative and Comparative Biology, at the University of Leeds, and the Department of Biology at the University of York, is published in the online edition of Ecology Letters.

Author Professor Bill Kunin of the University of Leeds says: "It’s not enough to know how much biodiversity an agricultural field supports, we also need to know how much food it produces. If 'sharing' our farmland with wildlife means that more total land will be taken into production to produce our food, then there may be a hidden cost of hurting wildlife somewhere else."

The scientists measured the density and numbers of species of butterflies in organic farms, conventional farms and grassland nature reserves in 16 locations in the South of England, the Midlands and Yorkshire. They used butterflies as a wildlife example because of their sensitivity to small-scale habitat change, and focused on winter cereal and pasture fields because they are among the commonest crops.

The team project that a combination of conventional farming and nature reserves would be better for butterflies if the organic yield per hectare falls below 87 per cent of conventional yield. But if the uncultivated land is not specifically managed for wildlife – being more like unmanaged field margins – organic farming would be better whenever organic yields rise above 35 per cent of conventional yields. The relative yield of organic farming is often somewhere between 35 per cent and 87 per cent of conventional yield, depending on the type of crop and landscape. The trade-off might also be different for other types of wildlife: for example wildflowers benefit more from organic farming than butterflies, and many birds do not benefit at all. The results suggest that organic farming will be better when organic yields are high and when spared land has low value to wildlife. Conventional farming will be better when organic yields are low and spared land is of high wildlife value.

Lead author, Dr Jenny Hodgson, of the Department of Biology at York, said: "This research raises questions about how agri-environment schemes and incentives could be improved. There could be much more scope for restoring and maintaining permanent, high-quality wildlife habitat. This might involve neighbouring farmers clubbing together to achieve a larger area of restored habitat, or setting up a partnership with a conservation organisation."

Author Professor Tim Benton highlights the fact that "More effective agri-environment methods will strengthen the case for conventional farming. The real challenge is to develop better ways to manage AES areas on conventional farms, so they can come closer to nature reserve standards. The spared land could be in nature reserves, but if properly managed, the spared land could also be in strips at the margins of fields."

One premise of this study was that we aim to maintain food yield and wildlife in the UK countryside, and that these cannot be traded off with food or wildlife further afield. However, in reality the situation is much more complicated.

Author Professor Chris Thomas, of the University of York says: "It is hard to work out the best strategies to minimise the environmental impact of producing food in a global context. For example, if we adopt a low-intensity farming strategy in Europe, European citizens won’t starve; we will simply import more food from other countries. This will potentially increase the area of land under cultivation, or the intensity of cultivation, in other countries, and hence accelerate biodiversity losses elsewhere in the world."

The research was supported by UKPopNet, the British Ecological Society and the University of Leeds. The fieldwork was conducted on a sample of farms selected from a study supported by the Rural Economy and Land Use Programme (RELU).

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

Further reports about: nature reserve organic farming synthetic biology

More articles from Ecology, The Environment and Conservation:

nachricht Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles
22.10.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>