Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification changes balance of biofouling communities

28.01.2015

A new study of marine organisms that make up the 'biofouling community' - tiny creatures that attach themselves to ships' hulls and rocks in the ocean around the world - shows how they adapt to changing ocean acidification. Reporting in the journal Global Change Biology, the authors examine how these communities may respond to future change.

There is overwhelming evidence to suggest the world's oceans are becoming, and will continue to become more acidic in the future, but there are many questions about how it will affect marine life. The 'biofouling community' - consisting of tiny species like sea squirts, hard shell worms and sponges - affects many industries including underwater construction, desalination plants and ship hulls. Removing these organisms (a process called antifouling) is estimated to cost around $22 billion a year globally.


A close up of the pipe shows Spirobid worms and sponges used in the experiment.

Credit: Deborah Power

For the first experiment of its kind, over 10,000 animals from the highly productive Ria Formosa Lagoon system in Algarve, Portugal were allowed to colonise hard surfaces in six aquarium tanks. In half the tanks, the seawater had the normal acidity for the lagoon (PH 7.9) and the other half were set at an increased acidity of PH 7.7. The conditions represented the IPCC's prediction for ocean acidification over the next 50 years.

After 100 days, animals with hard shells (Spirobid worms - Neodexiospira pseudocorugata) reduced to only one fifth of their original numbers, while sponges and some sea squirts (Ascidian Molgula sp) increased in number by double or even fourfold.

Lead author Professor Lloyd Peck from British Antarctic Survey (BAS) says:

"Our experiment shows the response of one 'biofouling community' to a very rapid change in acidity, but nonetheless shows the degree to which these communities could be impacted by ocean acidification, and to which its associated industries may need to respond.

What's interesting is that the increased acidity at the levels we studied destroys not the building blocks in the outer shell of the worms itself, but the binding that holds it together. Many individuals perish, but we also showed their larvae and juveniles are also unable to establish and create their hard exoskeleton."

Professor Peck continues, "Although a PH reduction of 0.2 is less than the IPCC's 'business as usual' scenario of PH 0.3 - 0.4 in ocean surface waters by 2100, it will likely be achieved between 2055 and 2070."

Author, Dr. Deborah Power, from Centro de Ciências do Mar says: "Taking into consideration the importance of the Ria Formosa lagoon as a natural park the modified community structure driven by a reduction in PH, while potentially reducing biofouling issues, will almost certainly affect lagoon productivity and impact on biodiversity."

###

The study was carried out by scientists from British Antarctic Survey, Centro de Ciências do Mar, Instituto Portugues do Mar e da Atmosfera and University of Cambridge.

Issued by the British Antarctic Survey Press Office.

Contact: Athena Dinar: Tel: +44 (0)1223 221441, +44 (0)7909 008516 email amdi@bas.ac.uk

Paul Seagrove: Tel: +44 (0)1223 221414, +44 (0)7736 921693 email: psea@bas.ac.uk

Photos of the experiment plates are available from the BAS ftp site: ftp://ftp.nerc-bas.ac.uk/pub/photo/biofouling-community/

NB: to download do not use an FTP client, simply open in any web browser (firefox/IE etc) right click on the filename and select 'save target/link/file as' to begin the download

Notes for editors

Acidification effects on biofouling communities: winners and losers by Lloyd S. Peck, Melody S. Clark, Deborah Power, João Reis, Federico M. Batista and Elizabeth M. Harper is published in the journal Global Change Biology on 28 January 2015.

Biofouling or biological fouling is the accumulation of microorganisms, plants, algae or animals on wet surfaces. Since biofouling can occur almost anywhere water is present, biofouling poses risks to a wide variety of objects such as medial devices and membranes, as well as to entire industries such as paper manufacturing, food processing, underwater construction, and desalination plants. The build up of biofouling on marine vessels poses a significant problem. The hull structure and propulsion systems can be damaged and over time, accumulated build up can increase the hydrodynamic volume of a vessel and the frictional effects leading to an increased drag of 60%.

In the study Spirorbid worm numbers decreased x5.5 (from 11.1 per 10square cm to 2.0). Molgula numbers increased x4.1. Sponge numbers (Leucosolenia sp.) increased x2.5.

The Ria Formosa is one of the most amazing places of the Algarve, not only for its variety of landscapes but also because of its unique location. Recently elected as one of the seven Natural Wonders of Portugal, this unique coastal lagoon is constantly changing due to the continuous movement of winds, currents and tides. Classified as a Natural Park in 1987, the Ria Formosa encompasses an area of about 18 000 hectares, and is protected from the sea by five barrier-islands and two peninsulas. The biofouling community in this location were chosen for their ability to develop quickly in its warm waters.

This work was funded by the Natural Environment Research Council (NERC) and an EU Research Infrastructure Action under the FP7 'Capacities' Specific Programme.

British Antarctic Survey (BAS), an institute of the Natural Environment Research Council (NERC), delivers and enables world-leading interdisciplinary research in the Polar Regions. Its skilled science and support staff based in Cambridge, Antarctica and the Arctic, work together to deliver research that uses the Polar Regions to advance our understanding of Earth as a sustainable planet. Through its extensive logistic capability and know-how BAS facilitates access for the British and international science community to the UK polar research operation. Numerous national and international collaborations, combined with an excellent infrastructure help sustain a world leading position for the UK in Antarctic affairs. For more information visit: http://www.antarctica.ac.uk.

Centro de Ciências do Mar (CCMAR), is an independent multidisciplinary, non-profit research organization within the University of Algarve system, with the mission to promote research and education on processes in the marine environment, with emphasis on biological interactions and the sustainable use of resources. The CCMAR research community is a dynamic mix of research groups integrating researchers in well-established and emerging fields. CCMAR is one of the foremost marine science research centres in Portugal, and facilitates access to services and facilities in marine science, aquaculture and biotechnology. It has extensive national and international collaborations and is a node of the European Marine Biological Resource Centre (EMBRC, http://www.embrc.eu) an ESFRI infrastructure and also part of the national nodes of ELIXIR (http://www.elixir-europe.org) and EMSO (http://www.emso-eu.org/). For more information visit: http://www.ccmar.ualg.pt

Athena Dinar | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>