Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Notre Dame study examines density stratification on microorganisms in aquatic ecosystems

07.03.2012
Microorganisms play pivotal functions in nature, particularly within aquatic ecosystems. Whether in an ocean or a lake, they are key players in the food chain and the vitality of individual ecosystems.
A team of researchers led by Arezoo M. Ardekani, the Rev. John Cardinal O'Hara, C.S.C., Assistant Professor of Aerospace and Mechanical Engineering at the University of Notre Dame, has shown that density stratification, a frequent feature of aquatic environments, has important ecological consequences on these small organisms.

The team recently published a paper in the Proceedings of the National Academy of Sciences that demonstrates that density variations encountered by organisms at pycnoclines have a major effect on the flow field, energy expenditure and nutrient uptake of small organisms. Organisms at pycnoclines, regions of sharp vertical variation in fluid density, afford a competitive advantage due to smaller risk of predation. These results can be used to explain why an accumulation of organisms and particles, which leads to a wide range of environmental and oceanographic processes, is associated with pycnoclines .

Ardekani joined the University in 2011. Her research interests focus on the fundamental properties of multiphase flows of Newtonian and non-Newtonian fluids relevant to biofluids, and micro/nanofluids for use in biomimetic applications, biomedical devices, alternative energy technologies, and environmental remediation.

Most recently, she was awarded a 2012 National Science Foundation Faculty Early Career Development Award for her work in fluid dynamics of bacterial aggregation and formation of biofilm streamers. Prior to joining the University, Ardekani served as a Shapiro Postdoctoral Fellow at the Massachusetts Institute of Technology and is currently a member of the American Association for the Advancement of Science, American Chemical Society, American Physical Society, American Society of Mechanical Engineers and Society of Rheology.

She received her doctorate (2009) and master's (2005) in mechanical and aerospace engineering from the University of California at Irvine and her bachelor's in mechanical engineering from the Sharif University of Technology in Iran (2003).

Arezoo M. Ardekani | EurekAlert!
Further information:
http://www.nd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>