Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-native marine species' spread, impact explained by time since introduction

11.08.2015

The time since the introduction of a non-native marine species best explains its global range, according to new research by an international team of scientists led by University of Georgia ecologist James E. Byers. The study, published in the open access journal Nature Scientific Reports, also contains a warning: The vast majority of marine invaders have not yet finished spreading.

Invasion by non-native species is a worldwide problem that causes billions of dollars of damage annually--more than $120 billion in the U.S. alone, according to a 2005 study cited by the U.S. Fish and Wildlife Service. Preventing future invasions, and mitigating the impacts of those already underway, is a critical goal, Byers said.


The European green crab, Carcinus maenas, is found throughout New England, the Canadian Maritimes, the west coast of North America from California to British Columbia as well as South Africa, New Zealand and Tasmania. It has large impacts on shellfish stocks and can reach high densities. It's been present in New England for almost 200 years.

Credit: D. Hazerli

Effective defenses against species invasions depend on understanding the mechanisms driving them. Control strategies have typically been based on key characteristics of the non-native species and the environments they're invading. For marine invaders, these include traits like mobility, maximum body size and larvae dispersal, and environmental conditions such as salinity, temperature and strength of ocean currents. Control strategies differ depending on which traits or environmental conditions are thought to be the main drivers of invasion.

Despite numerous studies, there has not been scientific consensus on which of these factors are most important.

While attending an invited workshop for experts in marine invasions in Sydney, Australia, in 2012, Byers and his colleagues conceived the idea for a comprehensive analysis to determine which variables were the best predictors of an invader's spread.

"This paper arose because we saw that we could gather data on a large number of species," Byers said. "Data clearing houses have gotten much better at recording species occurrence data."

Byers and his co-authors focused on marine benthic invertebrates--creatures such as crabs and barnacles that live on the ocean floor--that are non-native to the U.S., Australia or New Zealand, because those countries have the most comprehensive records.

They combed through national port surveys, invasive species databases and scientific literature, compiling information on as many of the animals' physical characteristics as possible, as well as environmental conditions of areas outside their native ranges. They also included records of each species' first introduction anywhere in the world. In all, they found 138 species with enough information to include in their analysis.

They then created a model to test which of the variables--species' traits, environmental conditions or time since introduction--did the best job of predicting the global ranges of those non-native species.

Time since introduction proved to be the most useful measurement.

"The fact that the physical variables didn't do such a good job of helping to predict range surprised us," Byers said. "Those variables must be important, but, in hindsight, if species are only occupying a fraction of their total potential non-native range, it does make sense that the physical variables would not yet work well."

He explained that a newly introduced species needs time to fully occupy its potential range in a new region.

"There may be plenty of places suitable for it to live in that novel region, but it just hasn't had time to spread there yet," he said. "Because we don't yet see the fully realized extent, it is hard to characterize a species' tolerances and limits that would otherwise control range size."

Byers said the study's results could nevertheless provide some guidance for managers.

"There is a lot of emphasis in invasion ecology in looking for predictive factors that can tell us what species or what habitats may be most at risk," Byers said. "Our analysis says at a large scale this may be hard to come up with, at least at this point in time before we are able to analyze the fully realized ranges of a sufficient number of invaders. Thus instead, we advocate careful vigilance at sites receiving the greatest number of potential invasive species delivery vectors, like ships with ballast water or imports for aquaculture."

###

The paper is available online at http://www.nature.com/srep/2015/150731/srep12436/full/srep12436.html.

The study's co-authors are Rachel S. Smith, UGA Odum School of Ecology; James M. Pringle, University of New Hampshire; Graeme F. Clark, Paul E. Gribben and Emma L. Johnston, University of New South Wales, Australia; Chad L. Hewitt, University of Waikato, New Zealand; Graeme J. Inglis, National Institute of Water and Atmospheric Research, New Zealand; Gregory M. Ruiz, Smithsonian Environmental Research Center; John J. Stachowicz, University of California, Davis; and Melanie J. Bishop, Macquarie University, Australia.

Funding was provided by Macquarie University, the University of New South Wales, the National Science Foundation, the New Zealand Ministry for Primary Industries and National Institute of Water and Atmospheric Research, the National Sea Grant Program and the Smithsonian Institution.

Media Contact

James E. Byers
jebyers@uga.edu
706-583-0012

 @universityofga

http://www.uga.edu 

James E. Byers | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Fungicides as an underestimated hazard for freshwater organisms
17.09.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Study: We need more realistic experiments on the impact of climate change on ecosystems
16.09.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>