Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter

31.05.2017

Traffic contributes more to nitrogen oxide emissions in Europe than previously thought. This is the result of a current study carried out by scientists from the University of Innsbruck. The research team headed by Thomas Karl shows that even newer air quality models underestimate traffic related nitrogen oxide pollution by up to a factor of 4. The results of the study are published in the Nature journal Scientific Reports.

In metropolitan areas throughout Europe maximum permissible values of nitrogen oxide are consistently breached. It has been a challenge to determine how much each polluter contributes to the emission output. Until now emission levels were mainly calculated by collecting emission data at laboratory testing facilities and subsequently extrapolating them in models.


Thomas Karl above the roofs of Innsbruck in Austria

Uni Innsbruck

However, the amount of pollutant emissions that vehicles emit on a daily basis depends on numerous factors, for example on individual driving behavior. The recent Diesel scandal showed, for example, that measurements at engine test stands based on the New European Driving Cycle (NEDC) or similar emission testing procedures can be highly uncertain for predicting actual environmental impacts. A large number of new studies have recently been published suggesting that emission levels from test stands have to be adjusted upwards.

Environmental protection and health agencies base their air pollution management on atmospheric models that rely on these experimental data from test facilities. While there have been some doubts about nitrogen oxide emissions for some time, scientists lacked the technology to measure the actual amount of emitted pollutants in a specific area and to determine their overall source strength. A team of physicists headed by Thomas Karl from the Institute of Atmospheric and Cryospheric Sciences at the University of Innsbruck has now implemented a process to do exactly that in the center of Innsbruck, Austria.

Actual nitrogen oxide emissions up to four times higher

The researchers from Innsbruck use a special measurement method – the so-called eddy-covariance method – to continuously monitor the concentration of trace gases in air, which enables them to determine the emissions in an urban area. “We continuously measure the concentration of carbon dioxide, nitrogen oxide and volatile organic compounds at our urban observatory in Innsbruck.

We record 36,000 data points per hour,” explains Karl. Using statistical methods, the scientists infer emissions from these data within a radius of about one kilometer of the measurement location. The analysis of the data of a three months long measurement campaign, which took place in 2015 and is now published in Scientific Reports, shows two main sources for nitrogen oxide concentrations in the Innsbruck air: traffic and residential combustion, with traffic accounting for more than 80 % of the nitrogen oxide emissions in the surroundings of the test station at the University.

The majority of the emissions is caused by Diesel cars. “This result is relatively representative for the whole city,” says Karl who points out the far-reaching relevance of the results: “Even newer atmospheric models are based on emission inventories that underestimate nitrogen oxide emission levels up to a factor of four.” The actual nitrogen oxide emission levels may be four times higher than predicted in the some models.

Tracking down the main polluter

Nitrogen oxide is toxic in higher concentrations and classified as hazardous air pollutant. In addition, it contributes to the development of ground-level ozone. Regulatory thresholds are meant to limit emissions. However, in Innsbruck, for example, the average level of nitrogen oxide is 36 times higher than the new emission regulation standard laid out in the Clean Air Act in the USA. Because of the high levels of nitrogen oxide along the motorways of the Inn valley and the Brenner pass, driving bans and speed limits pursuant to the Austrian Clean Air Protection Act (IG-L) have already been introduced.

The aim of the current study is to determine the main polluters of nitrogen oxide emissions in more detail. The Tyrolean scientists’ future goal is to use their setup to investigate the impact of the motorway in the Lower Inn valley, extend their measurements in Innsbruck to the winter months and study the impact of agricultural activities.

Moreover, air researcher Karl wants to establish longer measurement series’. An important step towards this goal is the establishment of the Innsbruck Atmospheric Observatory (IAO), which is currently being built at the Campus Innrain. It will be used by various research groups at the University of Innsbruck.

Publication: Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe. T. Karl, M. Graus, M. Striednig, C. Lamprecht, A. Hammerle, G. Wohlfahrt, A. Held, L. von der Heyden, M.J. Deventer, A. Krismer, C. Haun, R. Feichter, J. Lee. Scientific Reports 7, 2536 (2017) DOI: 10.1038/s41598-017-02699-9
http://www.nature.com/articles/s41598-017-02699-9

Contact:
Thomas Karl
Institute of Atmospheric and Cryospheric Sciences
University of Innsbruck
Phone: +43 512 507 54455
Email: thomas.karl@uibk.ac.at
Web: http://acinn.uibk.ac.at/

Christian Flatz
Public Relations Office
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://acinn.uibk.ac.at/research/physics - Atmospheric Physics and Chemistry (Thomas Karl)
http://en.wikipedia.org/wiki/New_European_Driving_Cycle - New European Driving Cycle
http://www.umweltbundesamt.at/en/services/services_pollutants/services_airqualit... - Austrian Ambient Air Quality Protection Act (IG-L)
http://www.epa.gov/laws-regulations/summary-clean-air-act - Clean Air Act

Dr. Christian Flatz | Universität Innsbruck

More articles from Ecology, The Environment and Conservation:

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit
20.11.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>