Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen has key role in estimating CO2 emissions from land use change

22.04.2013
A new global-scale modeling study that takes into account nitrogen – a key nutrient for plants – estimates that carbon emissions from human activities on land were 40 percent higher in the 1990s than in studies that did not account for nitrogen.

Researchers at the University of Illinois at Urbana-Champaign and the University of Bristol Cabot Institute published their findings in the journal Global Change Biology. The findings will be a part of the upcoming Fifth Assessment Report from the Intergovernmental Panel on Climate Change.

“One nutrient can make a huge impact on the carbon cycle and net emissions of the greenhouse gas carbon dioxide,” said study leader Atul Jain, a professor of atmospheric sciences at the U. of I. “We know that climate is changing, but the question is how much? To understand that, we have to understand interactive feedback processes – the interactions of climate with the land, but also interactions between nutrients within the land.”

The carbon cycle is a balance of carbon emissions into the atmosphere and absorption by oceans and terrestrial ecosystems. Carbon is absorbed by plants during photosynthesis and by the oceans through sea-air gas exchange. On the other side of the cycle, carbon is released by burning fossil fuels and by changes in land use – deforestation to expand croplands, for example. While fossil fuel emissions are well-known, there are large uncertainties in estimated emissions from land use change.

“When humans disturb the land, the carbon stored in the plants and the soil goes back into the atmosphere,” Jain said. “But when plants regrow, they absorb carbon through photosynthesis. Absorption or release of carbon can be enhanced or dampened depending on environmental conditions, such as climate and nutrient availability.”

Nitrogen is an essential mineral nutrient for plants, which means that plants need it to grow and thrive. In nontropical regions especially, plant regrowth – and therefore carbon assimilation by plants – is limited by nitrogen availability.

“Most models used to estimate global land use change emissions to date do not have the capability to model this nitrogen limitation on plant regrowth following land use change,” said Prasanth Meiyappan, a graduate student who is a co-author of the study. “This means, for example, they overestimate regrowth and they underestimate net emissions from the harvest-regrowth cycle in temperate forest plantations.”

Jain’s team, in collaboration with Joanna House, a researcher at the University of Bristol’s Cabot Institute, concluded that by not accounting for nitrogen as a limiting nutrient for plant growth, other models might have underestimated the 1990s carbon emissions from land use change by 70 percent in nontropical regions and by 40 percent globally.

“This gross underestimation has great implications for international policy,” House said. “If emissions from land-use change are higher than we thought, or the land sink (regrowth) is more limited, then future emissions cuts would have to be deeper to meet the same mitigation targets.”

Next, the researchers are investigating the impacts of other nutrients, such as phosphorus, on the carbon cycle. They also are estimating the carbon stored in the soil, and how much is released or absorbed when the soil is perturbed.

“Soil has great potential to sequester carbon,” Jain said. “The question is, how much that’s being released is being sequestered in the soil? We have to understand how human behavior is changing our environment and interacting with our ecosystems.”

The National Aeronautics and Space Administration, the U.S. Department of Energy and the UK Leverhulme Trust supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>