Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrogen Deposition Reduces Swiss Plant Diversity

08.04.2015

High human atmospheric nitrogen emissions lead to a reduction of plant diversity. Researchers at the University of Basel analyzed plots all over Switzerland and report that the plant diversity has decreased in landscapes with high nitrogen deposition. The journal Royal Society Open Science has published their results.

Nitrogen is an essential plant nutrient that used to be available only in limited amounts. Many ecosystems rich in plant species are adapted to low nitrogen availability. An increase in nitrogen availability often favors a few highly competitive species, resulting in a decrease of the overall plant diversity.


Emissions produced in agriculture are responsible for two thirds of the nitrogen deposition in Switzerland. Nitrogen oxides produces by burning of fossil fuels are responsible for the other third.

© University of Basel

The researchers compared six different measures of plant diversity on 381 randomly selected study plots in Switzerland. The plots were each one square kilometer in size and located between 260 and 3200 meters elevation. In all six measures, the researchers found a negative relation to atmospheric nitrogen emissions.

“Negative effects of nitrogen deposition on plant diversity were so far known from small-scale studies conducted mostly in areas of high conservation value”, says first author Tobias Roth. “We wanted to know whether these effects are also evident when looking at entire landscapes and different elevations”.

The weakest relation was found in the traditionally measured species richness, which measures the number of plant species per plot. The biologists found the strongest effect in the so-called phylogenetic diversity, a measure that compares DNA sequences. High nitrogen deposition thus leads to plant species being more strongly related to each other.

The study estimates the loss in phylogenetic plant diversity due to current human-induced nitrogen deposition at 19 percent. As a reference value, the researchers used an estimated historic nitrogen deposition without human influence.

Compared to the historic reference value, the loss in traditionally measured plant species richness was 5 percent. The researchers also compared the data to nitrogen deposition measures from 1880, during the industrialization in Europe. The loss in phylogenetic plant diversity in this case was still 11 percent.

Great diversity important for ecosystem functioning

Phylogenetic plant diversity is directly related to ecosystem functioning. Because the study found negative effects on phylogenetic plant diversity at the landscape scale, the researchers conclude that human nitrogen emissions could ultimately threaten the functioning of whole ecosystems.

“High plant diversity is important to us humans for many reasons”, says Valentin Amrhein, co-senior author. “For example, in the mountains, a larger number of plant species with different root depths will stabilize the soil more effectively and prevent erosion”.

The 381 plots were investigated as part of the program “Biodiversity Monitoring Switzerland”, a program conducted on behalf of the Federal Office for the Environment. According to the Federal Commission for Air Hygiene, emissions produced in agriculture are responsible for two thirds of the nitrogen deposition in Switzerland. Nitrogen oxides produces by burning of fossil fuels are responsible for the other third.

Original source
Tobias Roth, Lukas Kohli, Beat Rihm, Valentin Amrhein and Beat Achermann
Nitrogen deposition and multi-dimensional plant diversity at the landscape scale
Royal Society Open Science xxxxxxxxxxxxx doi:

Further information
Dr. Tobias Roth, Hintermann & Weber AG, CH-4153 Reinach, phone +41 (0)61 717 88 62, email roth@hintermannweber.ch
PD Dr. Valentin Amrhein, University of Basel, Department of Environmental Sciences, Zoology, phone +41 (0)79 848 99 33, email v.amrhein@unibas.ch
Beat Achermann, Bundesamt für Umwelt BAFU, Abteilung Luftreinhaltung und Chemikalien, CH-3003 Bern, phone +41 (0)58 462 99 78, email: beat.achermann@bafu.admin.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Nitrogen-Deposition-Reduc...

Olivia Poisson | Universität Basel

More articles from Ecology, The Environment and Conservation:

nachricht Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems
15.11.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Rethinking the science of plastic recycling
24.10.2019 | DOE/Argonne National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>