Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST/UMass study finds evidence nanoparticles may increase plant DNA damage

19.04.2012
Researchers at the National Institute of Standards and Technology (NIST) and the University of Massachusetts Amherst (UMass) have provided the first evidence that engineered nanoparticles are able to accumulate within plants and damage their DNA.

In a recent paper,* the team led by NIST chemist Bryant C. Nelson showed that under laboratory conditions, cupric oxide nanoparticles have the capacity to enter plant root cells and generate many mutagenic DNA base lesions.

The team tested the man-made, ultrafine particles between 1 and 100 nanometers in size on a human food crop, the radish, and two species of common groundcovers used by grazing animals, perennial and annual ryegrass. This research is part of NIST's work to help characterize the potential environmental, health and safety (EHS) risks of nanomaterials, and develop methods for identifying and measuring them.

Cupric oxide (also known as copper (II) oxide or CuO) is a compound that has been used for many years as a pigment for coloring glass and ceramics, as a polish for optics, and as a catalyst in the manufacture of rayon. Cupric oxide also is a strong conductor of electric current, a property enhanced at the nanoscale level, which makes the nanoparticle form useful to semiconductor manufacturers.

Because cupric oxide is an oxidizing agent—a reactive chemical that removes electrons from other compounds—it may pose a risk. Oxidation caused by metal oxides has been shown to induce DNA damage in certain organisms. What Nelson and his colleagues wanted to learn was whether nanosizing cupric oxide made the generation and accumulation of DNA lesions more or less likely in plants. If the former, the researchers also wanted to find out if nanosizing had any substantial effects on plant growth and health.

To obtain the answers, the NIST/UMass researchers first exposed radishes and the two ryegrasses to both cupric oxide nanoparticles and larger sized cupric oxide particles (bigger than 100 nanometers) as well as to simple copper ions. They then used a pair of highly sensitive spectrographic techniques** to evaluate the formation and accumulation of DNA base lesions and to determine if and how much copper was taken up by the plants.

For the radishes, twice as many lesions were induced in plants exposed to nanoparticles as were in those exposed to the larger particles. Additionally, the cellular uptake of copper from the nanoparticles was significantly greater than the uptake of copper from the larger particles. The DNA damage profiles for the ryegrasses differed from the radish profiles, indicating that nanoparticle-induced DNA damage is dependent on the plant species and on the nanoparticle concentration.

Finally, the researchers showed that cupric oxide nanoparticles had a significant effect on growth, stunting the development of both roots and shoots in all three plant species tested. The nanoparticle concentrations used in this study were higher than those likely to be encountered by plants under a typical soil exposure scenario.

"To our knowledge, this is first evidence that there could be a 'nano-based effect' for cupric oxide in the environment where size plays a role in the increased generation and accumulation of numerous mutagenic DNA lesions in plants," Nelson says.

Next up for Nelson and his colleagues is a similar study looking at the impact of titanium dioxide nanoparticles—such as those used in many sunscreens—on rice plants.

* D.H. Atha, H. Wang, E.J. Petersen, D. Cleveland, R.D. Holbrook, P. Jaruga, M. Dizdaroglu, B. Xing and B.C. Nelson. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environmental Science and Technology, Vol. 46 (3): pages 1819-1827 (2012), DOI: 10.1021/es202660k.

** Gas chromatography–mass spectrometry (GC-MS) to detect base lesions and inductively coupled plasma mass spectrometry (ICP-MS) to measure copper uptake.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: DNA DNA damage NIST information technology plant species rice plant

More articles from Ecology, The Environment and Conservation:

nachricht Reduced off-odor of plastic recyclates via separate collection of packaging waste
31.03.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Study suggests LEGO bricks could survive in ocean for up to 1,300 years
17.03.2020 | University of Plymouth

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>