Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Wave of Research: Ecology, Super-Sized

23.05.2014

The University of Wisconsin-Madison, home of pioneering ecologists who studied lakes, forests, wetlands and prairies, is playing a key role in the next wave of ecological research: large teams of scientists confronting the dilemma of a changing climate on a shrinking planet.

But where UW-Madison's Edward Birge and Chancey Juday, considered the founders of freshwater science, once studied lakes one by one, UW-Madison scientists are now leading several large-scale ecological investigations.


Courtesy of Jack Williams

Students and scientists under the leadership of Jack Williams drive a pollen sampling core into the sediment of Horseshoe Lake, Illinois in 2013. Pollen sampling can determine the species mix of a vanished forest, contributing to an ecological history of the Midwest.

The university, through its Trout Lake Station in Boulder Junction, Wisconsin, has played a pivotal role in the Global Lake Ecological Observatory Network (GLEON), an international network that has placed observation buoys at more than 100 lakes. The 24/7 nature of data collection is essential, says Tim Kratz, director of Trout Lake and a GLEON founder. "One difficulty in studying lakes is that many organisms are very short-lived, and the environment can change quickly."

Kratz says that when sensors that could ride a buoy and continuously send data to publicly accessible databases became available, "I thought, 'Why should everybody have to go through the same learning curve?'"

GLEON is a grassroots network of scientists and volunteers from 46 countries who gather data for their own purposes. Their records are being assembled to compare lakes of various sizes, located in different geographic or social settings and climates, Kratz says. For example, the project has discovered the release of greenhouse gases is controlled differently in large lakes versus small ones.

On land, PalEON (the Paleo-Ecological Observatory Network) is looking backward to see forward, assembling long-term records from lake sediments and other natural archives to build large-scale reconstructions of forest and climate history that support better predictions of future changes in climate and land cover. Forests can either supply carbon to the atmosphere or remove it, says UW-Madison geography Professor Jack Williams, director of the Nelson Center for Climatic Research.

"Some ecosystem models predict that forests will store more carbon over this century, but others say they will release more. The question matters because forests store such a vast amount of carbon and because carbon dioxide is the major greenhouse gas and therefore a major regulator of earth’s temperature. We just don’t know: Will forests multiply or mitigate climate change?"

The Wisconsin scientists are well versed in the multiple methods used to document past forests and climates, including isotopes inside decaying plant material, pollen and charcoal trapped in lake sediments, historic land surveys and tree rings. All reveal the change of conditions through time, and are helping track the poorly known history of the great forest that stretched from Minnesota to New York and New England.

PalEON is an 11-institution network headed by the University of Notre Dame, in which UW-Madison plays a leading role, Williams says. "With our traditional strengths in field and laboratory ecology and in building large-scale data syntheses, we can carry a heavy burden in the effort to map the changes in North American forests over the last thousand years, up through the present."

Williams, who heads Madison's participation in PalEON, says his group is filling in the blanks by assembling data from public land surveys, which show forest composition at the time of settlement, and pollen that sank to the bottom of lakes, which tracks the changing abundances of plants and trees around the lake.

"We're pollen whisperers," says Simon Goring, a postdoctoral fellow in geography, who notes that pollen records can extend back tens of thousands of years and can provide snapshots of forest composition from one decade to the next.

PalEON is getting information about the early 1800s by reanalyzing records that show forest density and composition, taken by federal surveyors who mapped Wisconsin and other parts of the Northwest Territories. Much of the Wisconsin data has been assembled by David Mladenoff in the Department of Forest and Wildlife Ecology, says Williams. "We are building on 20 years of David's work for Wisconsin, and adding that to studies from Minnesota and Michigan, to stitch together a wholesale map of changing land cover that will stretch to the Atlantic.

“It's kind of amazing; we take records gathered by people using sextants and chains, and feed it into databases that tell us about the landscape before Europeans made drastic changes to it."

"The pre-European settlement forest was much more mature with hickory, walnut, oak and beech," says Goring, compared to modern upper Midwestern forests, which look like young forests that follow fire or other disturbance, with more poplar and white birch.

The ultimate goal is to flesh out a deeper history of the effects of climate variability on forests, which are essential for the ecosystem models that explore the feedbacks between forest ecosystems and climate change, Williams says. "Having this rich history will help us run the various models and check them against our long-term data, and improve the models as necessary. This has long been done very successfully with weather forecasting and climate models, and it's now being done with terrestrial ecosystem models."

The new emphasis on large-scale ecosystem research "is the next logical step for a university with a long history of studying changes in climate due to human activity and other causes," says Williams. "Reid Bryson was one of the first to look seriously at climate change, and John Kutzbach produced a groundbreaking set of studies identifying the key causes of past climate change. Thompson Webb, my advisor at Brown, got his Ph.D. here in Madison in 1971 and has been studying paleoclimate ever since."

Ecological history — on both land and water — is no longer the province of the lone wolf, no matter how talented and dedicated, Williams says. "I really see it as 'ecology grows up, and grows out.' We are looking at bigger questions, a longer time scale, at wider horizons, and that requires bigger teams and more interdisciplinary work."

David Tenenbaum | newswise
Further information:
http://www.wisc.edu

Further reports about: Ecology Lake Wave composition databases ecosystem forests sediments

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>