Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Improves Forecasts for Canada’s Prized Salmon Fishery

04.03.2015

Method based on field data performs better than traditional management forecast tools

A powerful method for analyzing and predicting nature’s dynamic and interconnected systems is now providing new forecasting and management tools for Canada’s premier fishery.


Shane Kalyn

Mature Sockeye Salmon approach their spawning grounds in the Fraser watershed, British Columbia, Canada.

In a paper published in the Proceedings of the National Academy of Sciences, Scripps graduate student Hao Ye, Scripps Professor George Sugihara, and fisheries coauthors in Canada describe how the technique, called empirical dynamic modeling, or EDM, improved forecasting for Fraser River sockeye salmon, a highly prized fishery in British Columbia.

Developed at Scripps Institution of Oceanography at UC San Diego by Sugihara, the McQuown Chair Distinguished Professor of Natural Science, the new technique uses archives of field data to drive predictions of future performance.

Salmon populations in this fishery can exhibit dramatic and seemingly unpredictable changes in annual recruitment (also known as the “returns” in counting fish populations). In one example, salmon numbered only 1.4 million in 2009 but then boomed to 28.3 million in 2010. The researchers applied EDM methods in advance of the 2014 recruitment for Late Shuswap, a dominant recruitment location in 2014, and outperformed traditional forecasts with a smaller error margin. The EDM technique predicted returns of between 4.5 million and 9.1 million fish, while the official forecast indicated a much broader range of 6.9 million to 20 million. The actual tally has been listed at (approximately) 8.8 million fish.

“My colleagues and I are optimistic that our new approach will be adopted into the official forecasts, after undergoing careful review by the policymakers,” said Ye.
“Fisheries and Oceans Canada welcomes opportunities to examine alternative approaches which might improve the forecast of salmon returns in B.C.,” said study coauthor Sue Grant of Fisheries and Oceans Canada.

Sugihara says EDM advances ecosystem forecasting because it uses real-world field data, along with an intricate backbone of mathematical modeling that can account for the complicated interactions of variables and components in an ecosystem. Traditional scientific equations make assumptions about ecosystem processes, he says, and such assumptions can quickly lead to erroneous results.

“Despite what we are learning about the complexity of marine ecosystems, ecosystem models with specified equations assume we understand how natural ecosystems work, and their failure at real prediction shows that we do not,” said Sugihara. “Our paper provides a simple alternative: equation-free mathematical modeling. This approach allows the data to speak for itself, instead of shoe-horning ill-fitting data into preconceived equations. The bottom line is that the EDM approach forecasts accurately in real time.”

Sugihara first applied EDM to the more than 65 years of data archived by the California Cooperative Oceanic Fisheries Investigations (CalCOFI), a program that provides valuable data for long-term fisheries and coastal resources management, and has since applied the technique to topics spanning from climate change to cosmic rays.

In addition to Ye, Grant, and Sugihara, coauthors of the study include Richard Beamish, Laura Richards, and Jon Schnute of Fisheries and Oceans, Canada; Sarah Glaser of the University of Denver; and Chih-hao Hsieh of National Taiwan University.

The study was funded by the National Science Foundation (NSF), the Foundation for the Advancement of Outstanding Scholarship and Ministry of Science and Technology of Taiwan, the NSF NOAA Comparative Analysis of Marine Ecosystem Organization (CAMEO) Program, an NSF Graduate Research Fellowship, the Sugihara Family Trust, the Deutsche Bank-Jameson Complexity Studies Fund, and the McQuown Chair in Natural Science.

Contact Information
Mario Aguilera
858-534-3624
scrippsnews@ucsd.edu

Robert Monroe
858-534-3624
scrippsnews@ucsd.edu

Mario Aguilera | newswise
Further information:
http://www.ucsd.edu/

Further reports about: Ecosystem Fisheries NSF coastal resources cosmic rays ecosystems marine ecosystems

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>