Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows the importance of jellyfish falls to deep-sea ecosystem

16.10.2014

This week, researchers from University of Hawai'i, Norway, and the UK have shown with innovative experiments that a rise in jellyfish blooms near the ocean's surface may lead to jellyfish falls that are rapidly consumed by voracious deep-sea scavengers.

Previous anecdotal studies suggested that deep-sea animals might avoid dead jellyfish, causing dead jellyfish from blooms to accumulate and undergo slow degradation by microbes, depleting oxygen at the seafloor and depriving fish and invertebrate scavengers, including commercially exploited species, of food.


This image depicts hagfish and crustacean amphipods scavenging jellyfish baits in the deep sea.

Credit: Credit: A. Sweetman, C. Smith, D. Jones

Globally there are huge numbers of jellyfish in the oceans. In some parts of the ocean, jellyfish "blooms" are increasing apparently due to nutrient enrichment and climate change caused by human activities. In recent years, studies have suggested that when jellyfish blooms die-off, massive quantities of jellyfish sink out of surface waters and can deposit as "jelly-lakes" at the seafloor, choking seafloor habitats of oxygen and reducing biodiversity.

This latest research shows that the accumulation of dead jellyfish lakes may be unusual, with jellyfish carcasses normally being rapidly consumed by a host of typical deep-sea scavengers such as hagfish and crabs.

"We just had a hunch that dead jellyfish were important to deep-sea ecosystems in some way, even though they are made up largely of water. We therefore decided to film what the fate of jellyfish carcasses were at the seafloor so we deployed deep-sea lander systems with jellyfish bait. When we later retrieved the landers and found no jellyfish attached to the bait plates we were pleasantly surprised.

However, our surprise jumped to another level when we looked at the camera images and saw just how fast the jellyfish baits were consumed and the shear number of scavengers that were consuming the baits. It just blew our minds." lead author Andrew K. Sweetman said. Sweetman is a chief senior scientist and research coordinator for deep-sea ecosystem research at the International Research Institute of Stavanger in Norway.

Published October 15 in the prestigious journal Proceedings of the Royal Society: Biological Sciences, the research looked at the response by scavengers to jellyfish and fish baits in the deep-sea along the Norwegian margin. The researchers found that jellyfish and fish baits were consumed equally fast and attracted similar densities of a diversity of scavengers.

"The speed of the jellyfish scavenging was totally unexpected because earlier, previous observations seemed to suggest that jellyfish carcasses would just rot very slowly at the seafloor. It was also really interesting that the hagfish targeted the most energy-rich parts of the jellyfish, burrowing into the jellyfish carcasses to eat the gonads!" said Craig R. Smith, co-author, designer of the deep-see camera-lander systems used in the study, and a Professor of Oceanography and Pew Fellow in Marine Conservation at the University of Hawai'i at Mānoa, USA.

The study further revealed that the role of jellyfish material could be seriously underestimated in global carbon budgets in the ocean, because jellyfish were removed so quickly that they fail to accumulate at the seafloor, causing scientist to overlook their role in deep-sea food webs.

"Our work shows that previous assessments of the ocean carbon cycle may have missed an important component. Until we saw these photos we thought that the massive amount of jellyfish material was deposited on the seafloor and was essentially taken out of the system – removing carbon rapidly. Our results show that much of this carbon could, in fact, make it into deep-sea food webs, fueling these systems. This is especially important when other food sources to deep-sea ecosystems may be decreasing as our oceans warm" said co-author Daniel Jones, a scientist at the National Oceanography Center in Southampton UK.

Ultimately, this new research reveals that jellyfish blooms could provide far-reaching, potentially important, food supplements to normal deep-sea food webs, rather than having purely negative impacts on fisheries and marine ecosystem function.

###

Link to video and interview (more information below): http://bit.ly/ZYsSNS

BROLL (45 seconds followed by soundbites):

Video of jellyfish being eaten by ocean scavengers

SOUNDBITES:

Craig Smith - Oceanography professor, University of Hawaiʻi at Mānoa (11 seconds)

"And this is real, actually quite important. As the climate warms, as humans change the climate of the earth, and as they put nutrients in the ocean, there's an increase in the abundance of jellyfish."

Smith (14 seconds)

"It may mean that these changes that are occurring in the ocean where jellyfish are becoming more abundant are not as significant, not as bad as we thought they might be. The ocean may be more able to adjust to these changes than we expected."

Smith (13 seconds)

"We've only been able to do these experiments in one location. The scavengers that come are typical of the deep sea but it would be nice to replicate or repeat these experiments in other parts of the ocean to show that the scavenging processes are similar."

Sweetman AK, Smith CR, Dale T, Jones DOB. 2014. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proceedings of the Royal Society B 281: 20142210. http://dx.doi.org/10.1098/rspb.2014.2210

The School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa was established by the Board of Regents of the University of Hawai'i in 1988 in recognition of the need to realign and further strengthen the excellent education and research resources available within the University. SOEST brings together four academic departments, three research institutes, several federal cooperative programs, and support facilities of the highest quality in the nation to meet challenges in the ocean, earth and planetary sciences and technologies.

Marcie Grabowski | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Reduced off-odor of plastic recyclates via separate collection of packaging waste
31.03.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Study suggests LEGO bricks could survive in ocean for up to 1,300 years
17.03.2020 | University of Plymouth

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>