Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Suggests Caribbean Gorgonian Corals Are Resistant to Ocean Acidification

09.12.2014

First study to analyze the effects of climate scenarios on important Caribbean reef coral

A new study on tropical shallow-water soft corals, known as gorgonians, found that the species were able to calcify and grow under elevated carbon dioxide concentrations. These results suggest that Caribbean gorgonian corals may be more resilient to the ocean acidification levels projected by the end of the 21st century than previously thought.


Eunicea fusca, Curacao

Photo Credit: Juan A. Sanchez – Universidad de los Andes, Bogota Colombia

An international team of scientists, including from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, tested the effects of elevated CO2 concentrations on the growth and calcification rates of the sea rod, Eunicea fusca, a type of gorgonian or soft coral found throughout the Bahamas, Bermuda, South Florida and into the Gulf of Mexico.
Researchers collected E. fusca specimens from Big Pine Shoals in the Florida Keys to simulate a range of predicted future ocean acidification conditions – CO2 concentrations from 285-2,568 parts per million (pH range 8.1-7.1) – during a four-week experiment at the UM Rosenstiel School’s Coral Reefs and Climate Change Laboratory. Eunicea fusca showed a negative response to calcification under elevated CO2 concentrations, but growth and calcification did not stop under any of the CO2 levels used in the study.

“Our results suggest that gorgonian coral may be more resilient than other reef-dwelling species to the ocean acidification changes that are expected to occur in the oceans as a result of climate change,” said Chris Langdon, UM Rosenstiel Professor and Director of the Coral Reefs and Climate Change Laboratory. “These findings will allow us to better predict the future composition of coral reef communities under the current “business-as-usual scenario.”

The results showed that calcification dramatically declined at extremely high levels of CO2 but not at mid-elevated levels, which led the study’s authors to suggest that tropical gorgonian corals may be more resilient to the future levels of ocean acidification expected to occur during this century. Gorgonian corals form complex structures that provide essential habitat for other important reef-dwelling organisms. Based upon studies of encrusting coralline algae and echinoderms, scientists have suggested that corals with skeletons formed by high-magnesium calcite may be more susceptible to the impacts of ocean acidification than aragonite-depositing corals. This is the first study to find that not all high-magnesium calcite-secretors, such as soft corals, are more susceptible than aragonite secretors, such as stony reef-building corals.

The absorption of carbon dioxide by seawater, which results in a decline in pH level, is termed ocean acidification. The increased acidity in the seawater is felt throughout the marine food web as calcifying organisms, such as corals, oysters and sea urchins, find it more difficult to build their shells and skeletons making them more susceptible to predation and damage. According to the IPCC 5th Assessment Repot, year 2100 projected changes in surface ocean chemistry compared to preindustrial values are expected to fall by 0.14 to 0.43 units depending on whether there is global effort to sharply curtail emission or if emissions continue to increase each year.

The paper, titled “Reponses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions,” was published in the online first version of the journal Coral Reef. http://link.springer.com/article/10.1007/s00338-014-1241-3

The study co-authors include: Carlos E. Gómez and Juan A. Sànchez of the Universidad de los Andes in Bogotà, Columbia; Valerie J. Paul and Raphael Ritman-Williams of the Smithsonian Institution in Fort Pierce, FL., and Chris J. Langdon and Nancy Muehllehner of the UM Rosenstiel School of Marine and Atmospheric Science.
 

About the University of Miami’s Rosenstiel School
The University of Miami is the largest private research institution in the southeastern United States. The University’s mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu .

Diana Udel | EurekAlert!
Further information:
http://www.rsmas.miami.edu/news-events/press-releases/2014/new-research-suggests-caribbean-gorgonian-corals-are-resistant-to-ocean-aci/

More articles from Ecology, The Environment and Conservation:

nachricht A Rescue Plan for the Ocean
16.08.2019 | Institute for Advanced Sustainability Studies e.V.

nachricht Burst Hope: No chance for environment-relieving plastic decomposition by bacteria
07.08.2019 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>