# Forum for Science, Industry and Business

Search our Site:

## New Mathematical Method Enhances Hydrology Simulations

17.04.2015

Approach uses land-atmosphere observations to calibrate model.

Just as a racecar's engine needs the right fuel to get the best performance, so climate models need finely tuned parameters to accurately simulate the impacts of different technologies and policies.

Image courtesy of Storm Crypt (Flickr) via a Creative Commons License.

Scientists have developed a new approach that uses sophisticated mathematical solutions to improve computational simulations of ecosystem water processes.

Led by researchers at Pacific Northwest National Laboratory, a team applied sophisticated mathematical solutions to fine tune the water and energy exchange parameters, numerical stand-ins for complex processes, to more accurately simulate water and energy fluxes in the Community Land Model under different climate and environmental conditions.

The Impact

Calibrating the water and energy exchange parameters significantly improved simulations compared to results using the default Community Land Model parameter values.

Summary

The exchange of water and energy between the atmosphere and land is among the most uncertain aspects of climate modeling. For example, when rain falls on land, the amount of water that evaporates back into the atmosphere or gets carried by groundwater to rivers and the ocean is unclear.

The answer to this and similar questions could be estimated using climate models, but these models have numerous variables or "parameters" that must be adjusted based on observations of different regions of the Earth. One way to adjust these parameters is to run the model repeatedly, each time changing the parameters individually until a solution that matches observations is found.

However, it is possible that a different set of solutions would also match observations. Researchers evaluated inversion methodologies at select field sites based on global sensitivity analyses. They found significant improvements in the model simulations that better match the observed heat flux and runoff by using the estimated parameters compared to using the default parameters.Improvements in heat flux were found especially in areas with strong energy and water constraints.

Funding

This work is supported by the Climate Science for a Sustainable Energy Future project funded by the U.S. Department of Energy (DOE) Office of Science through the Earth System Modeling Program. Pacific Northwest National Laboratory's (PNNL) Platform for Regional Integrated Modeling and Analysis (PRIMA) Initiative provided support for the model configuration and datasets used in the numerical experiments.

Additional support was provided by the National Science Foundation of China (NSFC51190092, 51222901) and the foundation of the State Key Laboratory of Hydroscience and Engineering of Tsinghua University (2012-KY-03).

Publication

Y. Sun, Z. Hou, M. Huang, F. Tian, and L.R. Leung,"Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model." Hydrology and Earth System Sciences 17, 4995–5011 (2013). [DOI: 10.5194/hess-17-4995-2013].

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise

Further reports about: Atmosphere Earth Earth System Sciences Energy Simulations heat models parameters

### More articles from Ecology, The Environment and Conservation:

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

### Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

### Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

### Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

### Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

### Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Industry & Economy