Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New estimates on carbon emissions triggered by 300 years of cropland expansion in Northeast China

30.09.2014

The conversion of forests, grasslands, shrublands and wetlands to cropland over the course of three centuries profoundly changed the surface of the Earth and the carbon cycle of the terrestrial ecosystem in Northeast China.

In a new study published in the Beijing-based journal SCIENCE CHINA Earth Sciences, a team of researchers from Beijing Normal University, Nanjing University of Information Science & Technology, and the Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences, present new calculations on carbon emissions triggered by the expansion of cropland in this region between 1680 and 1980.


The image on the left depicts a reconstruction of pre-agriculture land cover, and the chart on the right shows carbon emissions from forest, grassland, wetland, and shrubland.

Credit: ©Science China Press

"Using regional land cover reconstructions from historical records, with a bookkeeping model, we estimated the carbon sink changes caused by historical cropland expansion in Northeast China during the past 300 years," state researchers Li Beibei, Fang Xiuqi, Ye Yu and Zhang Xuezhen.

In a new study titled, "Carbon emissions induced by cropland expansion in Northeast China during the past 300 years," these researchers state that during the three centuries until 1980, approximately 38% of the grassland and 20% of the forest and shrubland were converted to cropland.

"The carbon emission induced by cropland expansion between 1683 and 1980 was 1.06–2.55 Gt C(gigaton of carbon)," they state..

"The primary source of carbon emissions was forest reclamation (taking 60% of the total emissions in the moderate scenario), the secondary source was grassland cultivation (taking 27%), and the tertiary sources were shrubland and wetland reclamation (taking 13%)," they add.

"The carbon emission estimation in this study was lower than those in previous studies," they explain, "because of the improved land use data quality and various types of land use change considered."

These researchers reconstructed land cover during the period 1680-1980 by consulting historical documents including government files, Russian investigations in Northeast China, documents of the Manchurian Railway, and official statistics.

Both deforestation and grasslands reclamation for agricultural development has triggered large carbon emissions into the atmosphere. Land cover across Northeast China experienced dramatic changes during that period because of large-scale migration and agricultural development.

After Manchu warriors seized control of Beijing in 1644, they established the Qing Dynasty but closed off their homeland in northern Manchuria to migration by common Han Chinese citizens.

"The Qing Dynasty government then changed its policy from prohibiting to encouraging Han's migration for agriculture in the second half of the 19th century," state the researchers.

“The Hans’ migration and subsequent land reclamations resulted in a rapid increase of carbon emissions to 0.197 Gt C in 1850–1899, 0.758 Gt C in 1900–1949, and 0.371 Gt C in 1950–1980,” they explain.

From 1683 to 1980, between 35.5×103 and 97.4×103 square kilometers of forest were converted into cropland, along with 93.4×103 to 94.7×103 square kilometers of grassland, 23.1×103 to 61.8×103 square kilometers of shrubland, and 10×103 to 11.1×103 square kilometers of wetland.

Migration and the conversion of forests and grasslands into cultivated land proceeded northward, through what are now called Liaoning Province, Jilin Province, and Heilongjiang Province, from the end of the 1800s onward.

"Since 1900," the co-authors of the new study explain, "carbon emissions from Heilongjiang Province have greatly increased and even exceeded the total emissions of the other two provinces."

"During the 20th century," they add, "the largest increase in cropland occurred in Heilongjiang Province."

The co-authors of the new paper also explain that while previous studies focused mainly on carbon emissions from land use changes in terms of forest ecosystems, their research found that the conversion of non-forest ecosystems likewise played an important role in developing cropland and triggering carbon emissions.

"The carbon loss per unit area of the forest reclamation was larger than that in other, non-forest ecosystems, which caused the estimation in this study to be lower than Houghton et al.'s (2003) and Ge et al.'s (2008a) estimates," they state.

"The estimates of emissions from this study were lower than those from Houghton et al. (2003) and Ge et al. (2008a)," they add, "because this study used higher spatial resolution land use data based on historical documents and included disturbances of non-forest ecosystems such as steppe, shrub, and swamp."

###

This work was supported by the China Global Change Research Program (Grant No. 2010CB950103), the National Natural Science Foundation of China (Grant Nos. 40901099, 40571165), the Fundamental Research Funds for the Central Universities (Grant No. 2009SAP-2), and the Scientific Research Funds of Nanjing University of Information Science & Technology (Grant No. S8112090001).

See the article:

Li B B, Fang X Q, Ye Y, et al. 2014. Carbon emissions induced by cropland expansion in Northeast China during the past 300 years. SCIENCE CHINA: Earth Sciences, 57: 2259–2268, doi: 10.1007/s11430-014-4894-4

http://earth.scichina.com:8080/sciDe/EN/abstract/abstract515324.shtml

http://link.springer.com/article/10.1007%2Fs11430-014-4894-4

SCIENCE CHINA Earth Sciences is produced by Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advances made by Chinese scientists across a spectrum of fields. http://www.scichina.com/english/

Fang Xiuqi | Eurek Alert!

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>