Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New concept to help set priorities in water management

15.10.2015

The basic principle behind most strategies aimed at renaturalising ecosystems is to increase biodiversity by restoring natural habitat structure, which should lead to improved ecosystem services in the process. These projects often do not result in the success researchers had hoped for because the complexity of ecological relationships is so vast that it is difficult to detect the precise ecological factors that have priority over the many others in a particular case. Researchers working at the University of Montana and the UFZ have now developed a theoretical framework – the concept of ecological simplification – aimed at closing this gap. They tested it in two iconic river landscapes.

It sounds rather simple: in order to restore the original high level of biodiversity in our rivers, they should be renaturalised, i.e. returned to their original state. Yet it really is not that easy as these efforts are often limited in practice, e.g. through historical, cultural or economic factors.


Engineering structures (rip-rap and standard groynes) along the shore of the Elbe River (Germany).

M. Scholz, UFZ


Natural habitats along the shore of the Missouri River (Montana, US)

A. Semmler

Furthermore, it is profoundly difficult for on-site researchers to examine the abundance of ecological factors and find the ones that take priority from an ecological perspective. All too often the priorities for action are stipulated in terms of technical and financial feasibility. This leads to elaborate renaturalisation measures often not achieving the sought-after success. But what are the right measures? Which priorities should be set?

To help with this decision-making process, researchers have developed the concept of ecological simplification and tested it in two river landscapes. The concept assumes that natural river landscapes are highly complex. This complexity involves various components, in particular spatial heterogeneity, the connectivity between spacial compartments and historical legacy. Human activity has influenced each of these components in various ways, inevitably reducing complexity.

In other words, it simplifies the system and thus reduces the number of ecological niches in which species can coexist. By systematically observing these components of complexity, causes of the simplification can be recognised and countermeasures can be introduced to remedy them. When selecting efficient management measures, it therefore makes a big difference whether the ecological problems arise from past transformations of habitat resulting from development of human infrastructure, from a history of pollution caused by chemicals, and/or from invasion by alien species.

In the case study, researchers carefully examined two rivers that primarily differ in terms of the duration of human influence: a river section of the Missouri River in eastern Montana (USA) with comparatively low human influence, and the Elbe River that flows through populated areas of north eastern Germany where it has been influenced by intensive agricultural activity, shaped as an important shipping lane, and isolated from its flood plains over most of its length. .

The authors’ concept recognizes that man-made bank structures such as the groyne fields of the River Elbe can be optimised for biodiversity. If they have the "right" shape, they can create ecological niches and increase the variety of species living there. A comparison of both rivers shows that although the original niche diversity of a natural location cannot be fully restored, certain parameters, e.g. the variety of food for the animals, are converging back to their natural state through the influence of man-made structures.

This knowledge makes it possible to compensate for losses in the variety of species that arose as a result of reducing the cross-section of the river created to make the river navigable. However, artificially increasing the complexity of the Elbe River also creates new problems, e.g. the fact that niches emerge in which invasive species can settle. This could make it difficult for native species to repopulate in the long term. As a result, the measures introduced need to take into consideration the amount of niches created as well as their quality for native species.

The research team now needs to start underpinning the theoretical concept with specific case studies and corresponding recommendations for action. They are currently dealing with the issue of how to improve the ecological compatibility of necessary man-made structures in rivers in an international consortium.


Publication:
Peipoch, Marc; Brauns, Mario; Hauer, F. Richard; Weitere, Markus; Valett, H. Maurice; (2015): Ecological simplification: human influences on riverscape complexity. http://dx.doi.org/10.1093/biosci/biv120

The study was funded in the USA by the National Science Foundation (NSF) EPSCoR Track-1 grant no. EPS-1101342 (INSTEP 3) through the Montana Institute on Ecosystems.

Further information:
Prof. H. Maurice Valett, Dr. Marc Peipoch Guell
University of Montana, Montana Institute on Ecosystems and Division of Biological Sciences
Tel. +1 (0)406-243-6058
http://hs.umt.edu/dbs/people/?s=Valett3809
http://www.umt.edu/directory/details/8f0990b07012074c51eaea6f974d01ee
and
Prof. Markus Weitere, Dr. Mario Brauns
Helmholtz Centre for Environmental Research (UFZ)
Tel.: +49 (0)391-810-9600, -9140
http://www.ufz.de/index.php?en=14086
https://www.ufz.de/index.php?en=21905
or via
Susanne Hufe (UFZ Press Office)
Tel.: +49 (0)341-235-1630
http://www.ufz.de/index.php?en=640

Weitere Informationen:

http://www.ufz.de/index.php?en=35159

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>