Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mother knows best

10.09.2009
Females control sperm storage to pick the best father

Scientists have found new evidence to explain how female insects can influence the father of their offspring, even after mating with up to ten males. A team from the University of Exeter has found that female crickets are able to control the amount of sperm that they store from each mate to select the best father for their young.

The research team believes the females may be using their abdominal muscles to control the amount of sperm stored from each mate. Their findings are now published in the journal Molecular Ecology.

Female crickets mate with several different males, including their closest relatives. In general, offspring produced with close relatives are more likely to have genetic disorders. Different animals employ a range of behaviours to avoid this, such as not mating other animals from the group they grow up in. Crickets do not avoid mating with relatives, but this research shows that they produce more offspring fathered by males that are unrelated to them.

To conduct their study, the researchers bred field crickets in the laboratory. They used new DNA-based techniques to determine the quantity stored by each the female. They found that the females stored a higher content of sperm from unrelated males. They then tested young crickets to determine their paternity. The results showed that, regardless of the order in which they had mated, an unrelated mate was more likely to become a father. This must have been under female control, because the methods the team used meant that males could not influence the amount of sperm they passed to the female.

Though the study focused on field crickets, the findings are likely to be relevant in other insect species and possibly other sections of the animal kingdom. For example, chickens are known to store more sperm from dominant males.

Lead author Dr Amanda Bretman of the University of Exeter said: "Our study shows that even after mating, female insects control who fathers their offspring. We're only really just beginning to understand the reasons for the different mating strategies in the insect world and that is thanks to new techniques."

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>