Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More precise sensors to identify ocean acidification in the Baltic Sea

26.06.2014

The new European project PINBAL aims at the development of a spectrophotometric pH-measurement system for monitoring in the Baltic Sea

Today the European project PINBAL started with a kick-off meeting at the Leibniz Institute of Baltic Sea Research in Warnemünde (IOW).

The four participating partners of the project met to organize the next steps for project implementation. Beside the IOW, which is also responsible for the project coordination, the University of Gothenburg, the Institute of Oceanology in Sopot and the enterprise CONTROS Systems and Solution participate in PINBAL.

Since the beginning of the industrial era a considerable part of the increasing CO2 emissions dissolved into the ocean. As a result the pH value of the World´s Ocean has been decreased by 0.1. The International Panel of Climate Change (IPCC) considers the pH value to be decreased from 8.1 today to 7.7 in 2100 with severe consequences for the marine environment if the CO2 production follows a “business as usual” scheme.

For the Baltic Sea with its variable salinity, high concentrations of organic substances and the occurrence of hydrogen sulfide in the deep waters there are no suitable measuring methods up to day, to detect longtime variations. The PINBAL project group wants to bridge this gap.

Beside the monitoring demands, there is a strong interest of basic research, too, in such a development of a highly precise measuring method for the determination of the pH value in order to improve the option for investigating the Baltic Sea carbon dioxide turnovers.

Gregor Rehder, project coordinator and marine chemist at the IOW, describes the aims of the project. ”We want to develop a reliable and highly precise system to be deployed on so called voluntary observing ships (VOS).”

In recent years these VOS – cargo ships or ferries – have been equipped with automated measurement and sampling systems to create an efficient monitoring system for environmental parameters in surface waters of the Baltic Sea. They shall be the carrier of the future development as well.

PINBAL will receive funding for the next three years from BONUS (Art 185) funded jointly from the European Union’s Seventh Programme for research, technological development and demonstration, and from Baltic Sea national funding institutions. 

Contact:

Prof. Dr. Gregor Rehder, Department of Marine Chemistry, Leibniz-Institute for Baltic Sea Research Warnemünde (IOW), (Phone: +49 381 / 5197 336, Email: gregor.rehder@io-warnemuende.de)

Dr. Barbara Hentzsch, Public Relation, IOW (Phone: +49 381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Public Relation, IOW (Phone: +49 381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)

Dipl.-Phys. Peer Fietzek, CONTROS Systems & Solutions

Prof. Dr. Leif Anderson, University of Gothenburg

Dr. Karol Kulinski, Institute for Oceanology, Polish Academy of Science, Sopot

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.io-warnemuende.de

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>