Modest fisheries reduction could protect vast coastal ecosystems

The study, by Natalie Ban and Amanda Vincent of Project Seahorse, proposes modest reductions in areas where fisheries take place, rather than the current system of marine protected areas which only safeguard several commercially significant species, such as rockfish, shrimp, crab, or sea cucumber. The article is published today in PLoS ONE, an online journal of the Public Library of Science,

Using B.C.'s coastal waters as a test case, the study affirms that small cuts in fishing – if they happen in the right places – could result in very large unfished areas. For example, a two per cent cut could result in unfished areas covering 20 per cent of the B.C. coast, offered real conservation gains.

“The threat of over-fishing to our marine ecosystems is well-documented,” says Ban, who recently completed her PhD at the UBC Fisheries Centre. “Our study suggests a different approach could reduce the impacts on fishers as well as helping us move towards achieving conservation goals.”

Part of the reason for the research was to open a debate on how to meet conservation goals set during the 2002 World Summit on Sustainable Development, which included establishing a network of marine protected areas by 2012.

“With the current rates of progress, there is no chance of meeting our 2012 targets,” says Ban. “Given that fishers recognize the problem of overfishing but often regard marine protected areas as serving only to constrain them, another approach must be found. That's why we undertook this study.”

The research looked at spatial catch data from Fisheries and Ocean Canada for 13 commercial fisheries on Canada's west coast to show that large areas representing diverse ecoregions and habitats might be protected at a small cost to fisheries.

“Given the dismal state of many fisheries, we urgently need to identify alternative approaches to sustaining marine life while respecting the needs of fishers and fishing communities,” says Amanda Vincent, Canada Research Chair in Marine Conservation at UBC and Project Seahorse director. “We have little to lose – and much to gain – in trying a new approach in areas where marine conservation remains inadequate. Our research is globally relevant.”

Project Seahorse (www.projectseahorse.org) is an interdisciplinary and international organisation committed to conservation and sustainable use of the world's coastal marine ecosystems. This team engages in connected research and management at scales ranging from community initiatives to international accords. It has won many awards for its effective collaborations with stakeholders and for its capacity to advance solutions for marine conservation problems. Project Seahorse is based at the UBC Fisheries Centre and the Zoological Society of London, UK.

The UBC Fisheries Centre (www.fisheries.ubc.ca) undertakes research to restore fisheries, conserve aquatic life, and rebuild ecosystems. To that end, it promotes multidisciplinary study of aquatic ecosystems and broad-based collaboration with maritime communities, government, NGOs and other partners. The UBC Fisheries Centre is recognized globally for its innovative and enterprising research, with its academics winning many accolades and awards.

Media Contact

Brian Lin EurekAlert!

More Information:

http://www.ubc.ca

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors