Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Models Underestimate Future Temperature Variability; Food Security at Risk

21.02.2012
Climate warming caused by greenhouse gases is very likely to increase the variability of summertime temperatures around the world by the end of this century, a University of Washington climate scientist said Friday. The findings have major implications for food production.

Current climate models do not adequately reflect feedbacks from the relationship between the atmosphere and soil, which causes them to underestimate the increase of variability in summertime temperatures, said David Battisti, a UW professor of atmospheric sciences.

While warmer temperatures already have implications for food production in the tropics, the new findings suggest the increase in the volatility of summertime temperatures will have serious effects in grain-growing regions of Europe and North and South America, Battisti said.

“If there’s greater variability, the odds of the temperature being so high that you can’t grow a crop are greater,” he said.

“In terms of regional and global food security, it’s not good news.”

Battisti presented his findings at the American Association for the Advancement of Science meeting in Vancouver, Canada. His discussion was part of a panel on climate and global food security that included Rosamond Naylor of Stanford University and Daniel Vimont of the University of Wisconsin, with whom he has collaborated on previous food security research.

Earlier research has shown that by the end of this century, the increase in average growing season temperature, if other factors remain the same, will likely reduce yields of rice, corn and soybean 30 to 40 percent. Already rice yields in the tropics are being affected by higher temperatures, affecting nations such as Indonesia, which frequently imports rice to stabilize prices, Battisti said.

In addition, the scientists say global warming will have greater impacts than previously thought on the El Niño Southern Oscillation, a tropical phenomenon that has global impact on climate and food production. Their conclusions are based on geological and other proxy records of climate and El Niño from the last 10,000 years, plus recent analyses of long-term climate changes because of global warming.

The Intergovernmental Panel on Climate Change, the United Nations body conducting ongoing assessments of climate change, has estimated that future month-to-month temperature variability during summer months is likely to be greater in some places and less in some places, but should stay roughly constant in many places.

But the new modeling work, Battisti said, shows most areas can expect to see greater variability in summer temperatures between now and 2085, with the biggest impacts in Europe, Africa and South America.

“The increased variability will be pretty ubiquitous. You will see it pretty much everywhere.”

Increased temperature variability compounds the loss of production because of higher average temperatures, Battisti said. Add higher fertilizer prices and other market pressures to the mix “and food insecurity is likely to be higher than it has been for some time.”

For more information, contact Battisti at battisti@uw.edu

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>