Mobile Oceanographic Data Collection and Animal Tracking Platform Launched

Deployed from Stephenville, N.L., Canada on June 19, the Wave Glider will travel in the area of the Strait of Belle Isle and the Cabot Strait over a 30-day period before reaching its final waypoint at the northern tip of Cape Breton Island.

The Wave Glider, built by U.S. based Liquid Robotics, harvests energy from wave motion and solar panels to generate thrust at the ocean's surface. Piloted by the Liquid Robotics team, the Glider carries a VEMCO acoustic receiver to collect detections of tagged fish within 800m. Of particular interest on this trip are detections of Atlantic salmon tagged by the Atlantic Salmon Federation.

Mobile receivers greatly expand the range of animal detections contributing to more comprehensive records of animal movement, migration and survival. In the future, Gliders will be able to upload data from fixed receiver stations eliminating the need to hire costly ships for data retrieval by OTN researchers. This mission is testing the ability of a mobile receiver and will not collect data from bottom moored receivers.

“These things have excellent station keep capabilities. You can take a Wave Glider and literally park it over a [receiver]. On this mission it’ll be moving all the time, but if we want to use it in the future to upload receivers, you would just tell it, ‘go here,’ and it would stay there for however long it takes to upload the data. If there’s a problem and it takes two or three days to upload the data, the glider doesn’t care. The whole time it’s uploading [data], it can be sending it to you via satellite. When it’s done with that one, it just moves on to the next one.” – Richard Davis, Technical Director for the Dalhousie Glider Group

Researchers are also collecting ocean surface parameters as a context for animal movement and migration.

“The scientific community has little oceanographic data available in general for the location of the mission at this time of year for use in developing models of the oceanography and currents in the Gulf. The models are important for weather prediction, search and rescue activities, understanding the drivers of the ecosystem, and for environmental responses to events like oil spills.” – Dr. Fred Whoriskey, Executive Director of OTN

OTN is a $168-million research and technology development project headquartered at Dalhousie University. Starting in 2008, OTN began deploying Canadian state of the art acoustic receivers and oceanographic monitoring equipment in key ocean locations. These are being used to document the movements and survival of marine animals carrying acoustic tags and to document how both are influenced by oceanographic conditions. OTN is funded by the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

Nikki Beauchamp
Public Relations, Ocean Tracking Network
Dalhousie University
1355 Oxford Street
PO Box 15000
Halifax, Nova Scotia
B3H 4R2 Canada
Phone: 902.293.0181
FAX: 902.494.3736
email: n.beauchamp@dal.ca
http://oceantrackingnetwork.org/
http://canada.oceantrack.org/

Media Contact

Nikki Beauchamp Newswise Science News

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors