Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Oceanographic Data Collection and Animal Tracking Platform Launched

26.06.2012
A Wave Glider unmanned maritime vehicle (UMV) has been deployed by Ocean Tracking Network (OTN) researchers in the Gulf of St. Lawrence to test mobile collection and remote offloading of marine animal tracking information.

Deployed from Stephenville, N.L., Canada on June 19, the Wave Glider will travel in the area of the Strait of Belle Isle and the Cabot Strait over a 30-day period before reaching its final waypoint at the northern tip of Cape Breton Island.

The Wave Glider, built by U.S. based Liquid Robotics, harvests energy from wave motion and solar panels to generate thrust at the ocean's surface. Piloted by the Liquid Robotics team, the Glider carries a VEMCO acoustic receiver to collect detections of tagged fish within 800m. Of particular interest on this trip are detections of Atlantic salmon tagged by the Atlantic Salmon Federation.

Mobile receivers greatly expand the range of animal detections contributing to more comprehensive records of animal movement, migration and survival. In the future, Gliders will be able to upload data from fixed receiver stations eliminating the need to hire costly ships for data retrieval by OTN researchers. This mission is testing the ability of a mobile receiver and will not collect data from bottom moored receivers.

“These things have excellent station keep capabilities. You can take a Wave Glider and literally park it over a [receiver]. On this mission it’ll be moving all the time, but if we want to use it in the future to upload receivers, you would just tell it, ‘go here,’ and it would stay there for however long it takes to upload the data. If there’s a problem and it takes two or three days to upload the data, the glider doesn’t care. The whole time it’s uploading [data], it can be sending it to you via satellite. When it’s done with that one, it just moves on to the next one.” – Richard Davis, Technical Director for the Dalhousie Glider Group

Researchers are also collecting ocean surface parameters as a context for animal movement and migration.

“The scientific community has little oceanographic data available in general for the location of the mission at this time of year for use in developing models of the oceanography and currents in the Gulf. The models are important for weather prediction, search and rescue activities, understanding the drivers of the ecosystem, and for environmental responses to events like oil spills.” – Dr. Fred Whoriskey, Executive Director of OTN

OTN is a $168-million research and technology development project headquartered at Dalhousie University. Starting in 2008, OTN began deploying Canadian state of the art acoustic receivers and oceanographic monitoring equipment in key ocean locations. These are being used to document the movements and survival of marine animals carrying acoustic tags and to document how both are influenced by oceanographic conditions. OTN is funded by the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

Nikki Beauchamp
Public Relations, Ocean Tracking Network
Dalhousie University
1355 Oxford Street
PO Box 15000
Halifax, Nova Scotia
B3H 4R2 Canada
Phone: 902.293.0181
FAX: 902.494.3736
email: n.beauchamp@dal.ca
http://oceantrackingnetwork.org/
http://canada.oceantrack.org/

Nikki Beauchamp | Newswise Science News
Further information:
http://www.dal.ca
http://oceantrackingnetwork.org/
http://canada.oceantrack.org/

More articles from Ecology, The Environment and Conservation:

nachricht Marine oil snow
12.06.2019 | University of Delaware

nachricht Climate driving new right whale movement
29.05.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>