Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial Communities Changed After Deepwater Horizon Spill

11.06.2012
Communities of microbial organisms -- species such as nematodes, protists and fungi -- on beaches along the Gulf of Mexico changed significantly following the Deepwater Horizon oil spill in April 2010, research from the University of New Hampshire’s Hubbard Center for Genome Studies (HCGS) and partners found.

The findings, which analyzed marine sediments from five Gulf Coast sites prior to and several months following shoreline oiling, are published in the June 6, 2012, issue of the journal PLoS ONE.

The researchers sampled sites around Dauphin Island, Ala., and Grand Isle, La., just after the Deepwater Horizon spill began but before oil reached the shore, then again several months later, in September 2010.

“In that short time period, we saw a drastic change in the microbial community,” says lead author Holly Bik, a postdoctoral researcher at UNH’s HCGS when the research was conducted, now at the Genome Center at the University of California, Davis. “We were shocked at how drastic the change was, pre- and post-spill.”

Bik and senior author W. Kelley Thomas, director of the HCGS, as well as collaborators from Auburn University and the University of Texas, San Antonio, found that the communities of microbial eukaryotes (organisms not visible to the naked eye whose cells contain nuclei) in the sediments shifted dramatically from highly diverse communities dominated by nematodes – “what you would expect on a beach,” says Bik -- to an almost exclusively fungal community.

What’s more, those post-spill fungi seem to have an appetite for oil. “The fungal taxa that were there were previously associated with hydrocarbons,” Bik says, noting that the group of fungi sampled post-spill from the Grand Isle sites are suspected to utilize hydrocarbons and thrive in hostile, polluted conditions that appear to be intolerable for other marine fungi.

The researchers used two parallel methodologies – high-throughput gene sequencing to sort the organisms into “piles” by their DNA, and an under-the-microscope taxonomic approach -- to evaluate the communities pre- and post-spill. In the taxonomic data examining nematodes, researchers found that the post-spill samples were dominated by more predatory and scavenger nematodes as well as juveniles, suggesting.

While nematodes and fungi are hardly charismatic and are unlikely to turn up on the dinner table, these little-understood yet abundant organisms are nonetheless important. “They underpin the entire ecosystem,” Bik says. “If you knock out the base of the food pyramid, you’re not going to have food higher up in the food chain.” Further, they are also important for nutrient cycling and sediment stability.

The researchers’ findings also point to the possibility of lingering but hidden effects of the spill, which is the largest accidental marine oil spill in the history of the petroleum industry.

“If you turned up at the beach in September and looked around, you would have had no idea there was an oil spill,” Bik says. “Yet our data suggest considerable hidden initial impacts across shallow Gulf sediments that may be ongoing.” Ongoing research and sampling will aim to determine whether fungi are thriving and persisting long-term and whether the shift in communities is an ephemeral, seasonal or a more permanent phenomenon.

The use of high-throughput sequencing approaches to characterize changes in microscopic eukaryote communities is a cutting-edge technique for tracking environmental disturbance. “The development of these genomic tools provides a detailed understanding of the biological consequences of such environmental disasters and is the first step toward mindful approaches for mitigation and remediation of this oil spill and those we will face in the future,” says Thomas, who is the Hubbard Professor of Genomics at UNH.

The paper, “Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill,” is available to download from PLoS ONE here: http://dx.plos.org/10.1371/journal.pone.0038550. In addition to Bik and Thomas, co-authors were Kenneth Halanych from Auburn University and Jyotsna Sharma of University of Texas, San Antonio.

This research, which is ongoing, was funded through the National Science Foundation’s RAPID program for quick-response research on natural human-caused disasters and similar unanticipated events. More information about the grant is available here: http://www.unh.edu/news/cj_nr/2010/sep/bp14oil.cfm

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:

http://unh.edu/news/releases/2012/jun/img/bellair_blvd.JPG
Caption: Belleair Boulevard on Dauphin Island, Ala., in September 2010.
Credit: Holly Bik
http://unh.edu/news/releases/2012/jun/img/nematodes_in_tube.JPG
Caption: Nematodes sampled from Gulf of Mexico beaches several months after the Deepwater Horizon oil spill of 2010.

Credit: Holly Bik

Beth Potier | Newswise Science News
Further information:
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A landscape of mammalian development

21.02.2019 | Life Sciences

Surprising findings on forest fires

21.02.2019 | Earth Sciences

Atopic dermatitis: elevated salt concentrations in affected skin

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>