Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method of Studying Roots Rarely Used in Wetlands Improves Ecosystem Research

17.10.2011
A method of monitoring roots rarely used in wetlands will help Oak Ridge National Laboratory researchers effectively study the response of a high-carbon ecosystem to elevated temperatures and levels of carbon dioxide.

Colleen Iversen, ORNL ecosystem ecologist, and an international group of experts, worked to develop a consensus on the use of minirhizotrons, or tiny video cameras that take images of roots, in wetlands. Minirhizotrons are an improvement over previous technology because they don't harm the plants and allow researchers to examine a living root in the context of a soil environment.

“One of the benefits of minirhizotron technology is the ability to track the birth and death of individual roots,” said Iversen. “Root activity is integral to plant survival in wetlands that store a substantial amount of carbon in deep soil organic matter deposits but have limited nutrients available for plant uptake and use.”

Ultimately, the minirhizotrons will be placed in a black spruce bog in Minnesota, the site for the multi-year experiment SPRUCE, or Spruce and Peatland Responses Under Climatic and Environmental Change. Chambers placed in the site will allow researchers to manipulate air and soil temperatures and levels of carbon dioxide in an intact bog – a wetland that accumulates a deposit of dead plant material.

Understanding and improving the capabilities of these mini cameras will help the SPRUCE researchers study fine roots, which are responsible for plant water and nutrient uptake.

“Minirhizotrons are the best way to get at the dynamics of this short-lived and important root population, especially in a long-term experiment like SPRUCE where we can’t be too destructive in our soil measurements,” Iversen said.

One of the reasons scientists are interested in high-carbon ecosystems like the Minnesota bog is because they cover only three percent of global land surface, but store nearly one-third of terrestrial carbon. If the planet continues to warm, researchers hypothesize that bogs will dry out and more oxygen will be made available for microbial decomposition, which could lead to a massive release of carbon into the atmosphere, resulting in more warming.

Additionally, more precise studies of roots will help researchers effectively model roots and be able to better predict what role they will play in nutrient cycling and storing carbon belowground.

The paper, titled “Advancing the use of minirhizotrons in wetlands,” was published recently in Plant and Soil. In addition to Iversen and J. Childs at ORNL, other authors include M.T. Murphy of McGill University; M.F. Allen of the University of California, Riverside; D.M. Eissenstat of Pennsylvania State University; E.A. Lilleskov of the USDA Forest Service; T.M. Sarjala of the Finnish Forest Research Institute; V.L. Sloan of the University of Sheffield; and P.F. Sullivan of the University of Alaska, Anchorage.

Funding for this research was provided by the U.S. DOE Office of Science and the New Phytologist Trust. SPRUCE is a DOE Office of Science-funded effort operated by ORNL and USDA Forest Service scientists.

UT-Battelle manages ORNL for DOE’s Office of Science.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website http://science.energy.gov/.

Emma Macmillan | Newswise Science News
Further information:
http://www.ornl.gov

Further reports about: Forest Service ORNL SPRUCE Wetlands ecosystem video camera

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>