Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Management of mountain meadows influences resilience to climate extremes

10.01.2018

The species-rich mountain meadows of the Alps are subject to continuous land use changes and increasingly frequent climatic extremes. Persistent periods of drought are seen as the greatest threat to grassland ecosystems. To find out how a change in management influences the drought reaction of mountain meadows, a research team from the Max Planck Institute for Biogeochemistry in Jena together with international cooperation partners carried out field experiments in the Tyrolean Stubai Valley.

The results of the study, currently published in the Journal of Ecology, show that land use controls the resistance and recovery capacity of mountain meadows through various interactions between plants and soil microorganisms.


Research area in the Alps

© Stefan Karlowsky

Mountain meadows provide many important ecosystem services, even beyond the borders of the mountain regions. These include forage production, biodiversity, erosion control, and the supply of drinking water. In addition, these ecosystems have a high cultural value and serve for recreation. Due to societal changes, the management of mountain meadows has changed too, especially since the last century.

This is particularly well studied in the Alpine region, where locally up to 70 percent of traditional grazing and mowing has been abandoned. Such changes in land use have a strong impact on the composition of the plant community, the soil and the micro-organisms contained therein.

Interaction of plants and soil microorganisms is important

Plants increase the activity of bacteria and fungi by passing on a part of their carbon from photosyn-thesis to them. This in turn leads to a greater release of plant nutrients in the soil and in addition, mycorrhiza fungi provide access to extra resources outside the roots.

Longer periods of drought as predicted for the Alps, however, greatly reduce carbon uptake and input into the soil. Above ground, a withering of leaves and stems becomes visible, subterranean losses in nutrient uptake by the roots occur. However, a good supply of nutrients is important to ensure a quick recovery of the plants after the end of the drought.

Moderate management leads to faster recovery

The interdisciplinary team of scientists from Germany, France, Italy, and Austria investigated the carbon dioxide uptake and distribution in a total of 24 test plots at an altitude of over 1,800 meters using stable isotope labelling. During and after the drought, the researchers were able to follow the path of the carbon through plant sugars in leaves and roots up to root respiration and including ab-sorption into various bacteria and fungi. In addition, they determined the strength of the plant's nitrogen uptake from the soil after drought.

The scientists were able to show that although the spare plant community of a fallow meadow reacts less strongly to drought stress; it recovers more slowly than the more productive plant community of a moderately cultivated hayfield. The higher resistance of the fallow land was accompanied by a greater spread of mycorrhiza fungi, which, with their hyphae network, improve plant access to water and nutrients in the soil. The hay meadow plants had a different strategy during the drought.

They retained as many resources as possible in the form of sugars in their roots, but at the same time lost a lot of leaf mass. After the drought, these resources were released and the plants recovered quickly. The process was accompanied by an increased carbon transfer to free-living soil bacteria and fungi which are able to release further nutrients from the organic soil substance. On the basis of an increased nitrogen uptake during the recovery phase, the scientists were able to show that hay meadow plants can effectively absorb newly released nutrients in the soil and use them for regrowth.

Meadow ecosystems' ability to resist and to recover behave the other way round

Stefan Karlowsky, first author of the study and doctoral student at the Max Planck Institute for Bio-geochemistry, explains: “A high level of resistance is followed by a slow recovery, while a lower re-sistance is accompanied by a rapid recovery.” Consequently, the effects of extreme droughts on mountain pastures can be specifically regulated and potentially mitigated through appropriate man-agement.

“To this end, we still have to find out how different periods of time and intensity as well as repeated droughts affect meadow ecosystems”, Stefan Karlowsky looks ahead. "We assume that the good recreational ability of the managed mountain meadows pays off during stronger or more fre-quent dry periods.” adds Prof. Gerd Gleixner. Through regular mowing, the plants are accustomed to storing more resources in the roots and to use them for rapid regrowth.

The research work was carried out as part of the EU project REGARDS (http://www.project-regards.org/).

Original publication:
Karlowsky S., Augusti A., Ingrisch J., Hasibeder R., Lange M., Lavorel S., Bahn M. and Gleixner G., Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. Journal of Ecology, 2017; 00:1–14. https://doi.org/10.1111/1365-2745.12910

Contact:
Stefan Karlowsky
Phone: +49 (0)3641 57 6147, Email: skarlo@bgc-jena.mpg.de

apl. Prof. Dr. Gerd Gleixner
Phone +49 (0)3641 57 6172, Email: gerd.gleixner@bgc-jena.mpg.de

Weitere Informationen:

http://www.project-regards.org/ REGARDS Project
https://doi.org/10.1111/1365-2745.12910 Link to the publication
https://www.bgc-jena.mpg.de/www/index.php/Main/HomePage Link to MPI for Biogeochemistry

Susanne Héjja | Max-Planck-Institut für Biogeochemie

More articles from Ecology, The Environment and Conservation:

nachricht New mathematical model can help save endangered species
14.01.2019 | University of Southern Denmark

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>