Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Management of mountain meadows influences resilience to climate extremes

10.01.2018

The species-rich mountain meadows of the Alps are subject to continuous land use changes and increasingly frequent climatic extremes. Persistent periods of drought are seen as the greatest threat to grassland ecosystems. To find out how a change in management influences the drought reaction of mountain meadows, a research team from the Max Planck Institute for Biogeochemistry in Jena together with international cooperation partners carried out field experiments in the Tyrolean Stubai Valley.

The results of the study, currently published in the Journal of Ecology, show that land use controls the resistance and recovery capacity of mountain meadows through various interactions between plants and soil microorganisms.


Research area in the Alps

© Stefan Karlowsky

Mountain meadows provide many important ecosystem services, even beyond the borders of the mountain regions. These include forage production, biodiversity, erosion control, and the supply of drinking water. In addition, these ecosystems have a high cultural value and serve for recreation. Due to societal changes, the management of mountain meadows has changed too, especially since the last century.

This is particularly well studied in the Alpine region, where locally up to 70 percent of traditional grazing and mowing has been abandoned. Such changes in land use have a strong impact on the composition of the plant community, the soil and the micro-organisms contained therein.

Interaction of plants and soil microorganisms is important

Plants increase the activity of bacteria and fungi by passing on a part of their carbon from photosyn-thesis to them. This in turn leads to a greater release of plant nutrients in the soil and in addition, mycorrhiza fungi provide access to extra resources outside the roots.

Longer periods of drought as predicted for the Alps, however, greatly reduce carbon uptake and input into the soil. Above ground, a withering of leaves and stems becomes visible, subterranean losses in nutrient uptake by the roots occur. However, a good supply of nutrients is important to ensure a quick recovery of the plants after the end of the drought.

Moderate management leads to faster recovery

The interdisciplinary team of scientists from Germany, France, Italy, and Austria investigated the carbon dioxide uptake and distribution in a total of 24 test plots at an altitude of over 1,800 meters using stable isotope labelling. During and after the drought, the researchers were able to follow the path of the carbon through plant sugars in leaves and roots up to root respiration and including ab-sorption into various bacteria and fungi. In addition, they determined the strength of the plant's nitrogen uptake from the soil after drought.

The scientists were able to show that although the spare plant community of a fallow meadow reacts less strongly to drought stress; it recovers more slowly than the more productive plant community of a moderately cultivated hayfield. The higher resistance of the fallow land was accompanied by a greater spread of mycorrhiza fungi, which, with their hyphae network, improve plant access to water and nutrients in the soil. The hay meadow plants had a different strategy during the drought.

They retained as many resources as possible in the form of sugars in their roots, but at the same time lost a lot of leaf mass. After the drought, these resources were released and the plants recovered quickly. The process was accompanied by an increased carbon transfer to free-living soil bacteria and fungi which are able to release further nutrients from the organic soil substance. On the basis of an increased nitrogen uptake during the recovery phase, the scientists were able to show that hay meadow plants can effectively absorb newly released nutrients in the soil and use them for regrowth.

Meadow ecosystems' ability to resist and to recover behave the other way round

Stefan Karlowsky, first author of the study and doctoral student at the Max Planck Institute for Bio-geochemistry, explains: “A high level of resistance is followed by a slow recovery, while a lower re-sistance is accompanied by a rapid recovery.” Consequently, the effects of extreme droughts on mountain pastures can be specifically regulated and potentially mitigated through appropriate man-agement.

“To this end, we still have to find out how different periods of time and intensity as well as repeated droughts affect meadow ecosystems”, Stefan Karlowsky looks ahead. "We assume that the good recreational ability of the managed mountain meadows pays off during stronger or more fre-quent dry periods.” adds Prof. Gerd Gleixner. Through regular mowing, the plants are accustomed to storing more resources in the roots and to use them for rapid regrowth.

The research work was carried out as part of the EU project REGARDS (http://www.project-regards.org/).

Original publication:
Karlowsky S., Augusti A., Ingrisch J., Hasibeder R., Lange M., Lavorel S., Bahn M. and Gleixner G., Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. Journal of Ecology, 2017; 00:1–14. https://doi.org/10.1111/1365-2745.12910

Contact:
Stefan Karlowsky
Phone: +49 (0)3641 57 6147, Email: skarlo@bgc-jena.mpg.de

apl. Prof. Dr. Gerd Gleixner
Phone +49 (0)3641 57 6172, Email: gerd.gleixner@bgc-jena.mpg.de

Weitere Informationen:

http://www.project-regards.org/ REGARDS Project
https://doi.org/10.1111/1365-2745.12910 Link to the publication
https://www.bgc-jena.mpg.de/www/index.php/Main/HomePage Link to MPI for Biogeochemistry

Susanne Héjja | Max-Planck-Institut für Biogeochemie

More articles from Ecology, The Environment and Conservation:

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>