Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making More Plastics Recyclable

02.09.2019

To date, it is nothing but the wishful thinking of many plastics recyclers: that recyclability is taken into account right from the very beginning of a product’s life cycle, at the product design stage. A new project aims at making this dream come true.

Whether multi-layered food packaging, power cable sheathing or a toothbrush: Many plastic products cannot be recycled. This is the case, for example, when products are made of multiple materials that cannot be separated at all or only insufficiently.


The DIMOP project aims to develop digital tools to easily determine and improve the recyclability of plastic products, for example, by reducing the number of material components.

Picture: Jan Werner / SKZ Würzburg

Only 16 percent of plastic waste produced in Germany is also recycled here. This figure is quoted by the Plastikatlas 2019 published by the German Federation for the Environment and Nature Conservation (BUND) and the Heinrich Böll Foundation. The majority of plastic waste is thus burnt in waste incineration plants to generate energy or is used as alternative fuel.

Design and recycling – worlds apart

Making more plastics recyclable: The Chair of Business Administration and Business Information Systems at Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, has been working towards this goal since July 2019 together with the German Plastics Centre SKZ and two partners from the Bavarian plastics industry. Their project is funded by the Bavarian State Ministry for the Environment and Consumer Protection.

The partners aim at increasing the share of recyclable plastics by reducing the number of material components. "We focus on the product design stage because the recyclability aspect has largely been neglected by designers so far," says Jan Werner from the SKZ, a member of the Zuse society of independent research institutes. "Designers and recyclers live in two completely different worlds; there is no exchange of information." This is why designers often choose materials that are very difficult to recycle.

Digital platform provides information about materials

The project now plans to bring together these two worlds. To achieve this, the scientists want to create a software platform which provides information on the recyclability of different plastics and material combinations. This will enable designers to weigh criteria such as functionality, resource efficiency and recyclability against each other and choose better materials based on this.

A JMU team around Norman Pytel and Professor Axel Winkelmann is in charge of creating this platform. "We want to provide digital tools for product developers to help them make better material choices – always with the aim of increasing the recyclability of plastic products," says PhD student Pytel.

Part of a Bavarian collaborative project to increase resource efficiency

The DIMOP project deals with digital multi-criteria material selection to optimise the recyclability of plastic materials. It is funded by the Free State of Bavaria within the scope of ForCYCLE II, a collaborative project for more resource efficiency in the Bavarian economy, especially in SMEs and handicraft businesses. The project was kicked off in July 2019 and is set to run for three years.

Wissenschaftliche Ansprechpartner:

Dr. Jan Werner, SKZ – German Plastics Centre, T +49 931 4104-260, j.werner@skz.de
Norman Pytel, University of Würzburg, T +49 931 31-86348, norman.pytel@uni-wuerzburg.de

Weitere Informationen:

https://www.stmuv.bayern.de/themen/ressourcenschutz/forschung_entwicklung/forcyc... ForCYCLE II collaborative project
https://www.wiwi.uni-wuerzburg.de/lehrstuhl/wiinf2/team/lehrstuhlinhaber/prof-dr...
http://Chair of Business Administration and Business Information Systems of the University of Würzburg
https://www.skz.de/en SKZ – German Plastics Centre

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>