Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning helps predict worldwide plant-conservation priorities

04.12.2018

New analytics approach identifies 15,000 at-risk species

There are many organizations monitoring endangered species such as elephants and tigers, but what about the millions of other species on the planet -- ones that most people have never heard of or don't think about?


The map shows predicted levels of risk to more than 150,000 plant species. Using vast amounts of open-access data, researchers were able to identify high-risk plants worldwide. Warmer colors denote areas with larger numbers of potentially at-risk species, while cooler colors denote areas with low overall predicted risk.

Credit: Anahí Espíndola and Tara Pelletier

How do scientists assess the threat level of, say, the plicate rocksnail, Caribbean spiny lobster or Torrey pine tree?

A new approach co-developed at The Ohio State University uses data analytics and machine learning to predict the conservation status of more than 150,000 plants worldwide.

Results suggest that more than 15,000 species likely qualify as near-threatened, vulnerable, endangered or critically endangered.

The approach will allow conservationists and researchers to identify the species most at risk, and also to pinpoint the geographic areas where those species are highly concentrated.

The study appears online today (Dec. 3, 2018) in the journal Proceedings of the National Academy of Sciences.

"Plants form the basic habitat that all species rely on, so it made sense to start with plants," said Bryan Carstens, a professor of evolution, ecology and organismal biology at Ohio State.

"A lot of times in conservation, people focus on big, charismatic animals, but it's actually habitat that matters. We can protect all the lions, tigers and elephants we want, but they have to have a place to live in."

Currently, the International Union for the Conservation of Nature -- which produces the world's most comprehensive inventory of threatened species (the "Red List") -- more or less works on a species-by-species basis, requiring more resources and specialized work than is available to accurately assign a conservation-risk category to every species.

Of the nearly 100,000 species currently on the Red List, plants are among the least represented, with only 5 percent of all currently known species accounted for.

The new approach co-developed by Carstens and lead author Tara Pelletier, a former Ohio State graduate student who is now an assistant professor of biology at Radford University, aims to expand the number of plant species included.

The research team built their predictive model using open-access data from the Global Biodiversity Information Facility and TRY Plant Trait Database.

Their algorithm compared data from those sources with the Red List to find risk patterns in habitat features, weather patterns, physical characteristics and other criteria likely to put species in danger of extinction.

A map of the data shows that at-risk plant species tend to cluster in regions with high native biodiversity, such as southwestern Australia, Central American rainforests and southeastern coast of the U.S., where more species compete for resources.

"What this allowed us to do is basically make a prediction about what sorts of conservation risks are faced by species that people haven't done these detailed assessments on," Carsten said.

"This isn't a substitute for more-detailed assessments, but it's a first pass that might help identify species that should be prioritized and where people should focus their attention."

Carsten said the biggest challenge was collecting data on such a large scale, noting it took several months of quality-control checking to ensure the team was working with reliable figures.

The new technique was created to be repeatable by other scientists, whether on a global scale like this study or for a single genus or ecosystem.

###

The study was supported by the National Science Foundation, the National Institutes of Health, DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research.

Other authors were Anahí Espíndola of The University of Maryland and Jack Sullivan and David Tank of the University of Idaho.

CONTACT: Bryan Carstens, 614-292-6587; Carstens.12@osu.edu

Written by Denise Blough, Blough.24@osu.edu

Media Contact

Bryan Carstens
Carstens.12@osu.edu
614-292-6587

 @osuresearch

http://news.osu.edu 

Bryan Carstens | EurekAlert!
Further information:
https://news.osu.edu/machine-learning-helps-predict-worldwide-plant-conservation-priorities/
http://dx.doi.org/10.1073/pnas.1804098115

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>