Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning helps predict worldwide plant-conservation priorities

04.12.2018

New analytics approach identifies 15,000 at-risk species

There are many organizations monitoring endangered species such as elephants and tigers, but what about the millions of other species on the planet -- ones that most people have never heard of or don't think about?


The map shows predicted levels of risk to more than 150,000 plant species. Using vast amounts of open-access data, researchers were able to identify high-risk plants worldwide. Warmer colors denote areas with larger numbers of potentially at-risk species, while cooler colors denote areas with low overall predicted risk.

Credit: Anahí Espíndola and Tara Pelletier

How do scientists assess the threat level of, say, the plicate rocksnail, Caribbean spiny lobster or Torrey pine tree?

A new approach co-developed at The Ohio State University uses data analytics and machine learning to predict the conservation status of more than 150,000 plants worldwide.

Results suggest that more than 15,000 species likely qualify as near-threatened, vulnerable, endangered or critically endangered.

The approach will allow conservationists and researchers to identify the species most at risk, and also to pinpoint the geographic areas where those species are highly concentrated.

The study appears online today (Dec. 3, 2018) in the journal Proceedings of the National Academy of Sciences.

"Plants form the basic habitat that all species rely on, so it made sense to start with plants," said Bryan Carstens, a professor of evolution, ecology and organismal biology at Ohio State.

"A lot of times in conservation, people focus on big, charismatic animals, but it's actually habitat that matters. We can protect all the lions, tigers and elephants we want, but they have to have a place to live in."

Currently, the International Union for the Conservation of Nature -- which produces the world's most comprehensive inventory of threatened species (the "Red List") -- more or less works on a species-by-species basis, requiring more resources and specialized work than is available to accurately assign a conservation-risk category to every species.

Of the nearly 100,000 species currently on the Red List, plants are among the least represented, with only 5 percent of all currently known species accounted for.

The new approach co-developed by Carstens and lead author Tara Pelletier, a former Ohio State graduate student who is now an assistant professor of biology at Radford University, aims to expand the number of plant species included.

The research team built their predictive model using open-access data from the Global Biodiversity Information Facility and TRY Plant Trait Database.

Their algorithm compared data from those sources with the Red List to find risk patterns in habitat features, weather patterns, physical characteristics and other criteria likely to put species in danger of extinction.

A map of the data shows that at-risk plant species tend to cluster in regions with high native biodiversity, such as southwestern Australia, Central American rainforests and southeastern coast of the U.S., where more species compete for resources.

"What this allowed us to do is basically make a prediction about what sorts of conservation risks are faced by species that people haven't done these detailed assessments on," Carsten said.

"This isn't a substitute for more-detailed assessments, but it's a first pass that might help identify species that should be prioritized and where people should focus their attention."

Carsten said the biggest challenge was collecting data on such a large scale, noting it took several months of quality-control checking to ensure the team was working with reliable figures.

The new technique was created to be repeatable by other scientists, whether on a global scale like this study or for a single genus or ecosystem.

###

The study was supported by the National Science Foundation, the National Institutes of Health, DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research.

Other authors were Anahí Espíndola of The University of Maryland and Jack Sullivan and David Tank of the University of Idaho.

CONTACT: Bryan Carstens, 614-292-6587; Carstens.12@osu.edu

Written by Denise Blough, Blough.24@osu.edu

Media Contact

Bryan Carstens
Carstens.12@osu.edu
614-292-6587

 @osuresearch

http://news.osu.edu 

Bryan Carstens | EurekAlert!
Further information:
https://news.osu.edu/machine-learning-helps-predict-worldwide-plant-conservation-priorities/
http://dx.doi.org/10.1073/pnas.1804098115

More articles from Ecology, The Environment and Conservation:

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit
20.11.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

 
Latest News

A bit of a stretch... material that thickens as it's pulled

04.12.2018 | Materials Sciences

To detect new odors, fruit fly brains improve on a well-known computer algorithm

04.12.2018 | Life Sciences

New technique to identify phloem cells aids in the fight against citrus greening

04.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>