Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When leaves fall, more is occurring than a change of weather

23.09.2008
MU researchers identify genetic pathway of abscission, which could lead to future economic benefits

A falling leaf often catches a poet's eye, but scientists also wonder about the phenomenon that causes leaves to fall, or abscission in plants. Abscission is the physiological process plants use to separate entire organs, such as leaves, petals, flowers and fruit, that allow plants to discard non-functional or infected organs.

University of Missouri researchers have uncovered the genetic pathway that controls abscission in the plant species Arabidopsis thaliana. The ability to control abscission in plants is of special interest to those in the commercial fruit tree and cut flower industries, which rely heavily on abscission-promoting or inhibiting agents to regulate fruit quality and pre-harvest fruit drop.

"Understanding the physiological mechanism by which plants control abscission is important for understanding both plant development and plant defense mechanisms," said John Walker, director of the MU Interdisciplinary Plant Group at the Christopher S. Bond Life Sciences Center. "Insight into the process of abscission in Arabidopsis thaliana provides a foundation for understanding this fundamental physiological process in other plant species."

Plants abscise an organ for a number of reasons, according Walker. Aged leaves, for example, may be shed to facilitate the recycling of nutrients, ripening fruits dropped to promote seed dispersal and infected or diseased floral organs discarded to prevent the spread of disease. However, why Arabidopsis thaliana is a small flowering plant that is native to Europe, Asia and northwestern Africa, sheds its floral parts after maturation is unclear. The floral part on the plant does not take significant space and abscission does not appear to serve an obvious function. Yet, the genes for abscission have been there for a really long time, Walker said.

Previous studies analyzing abscission in plants have implicated several different genes and gene products. Walker and his colleagues are the first to identify a pathway of genes involved in the process of abscission in Arabidopsis by using a combination of molecular genetics and imagine techniques.

"The process of abscission is a phenomenon that we have yet to fully understand," said Walker, who is also a professor of biological sciences in MU's College of Arts and Science. "Several different genes are involved in the process. Instead of looking at individual genes or proteins, we looked at an entire network at once to see how the difference genes work together in abscission."

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>