Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When leaves fall, more is occurring than a change of weather

23.09.2008
MU researchers identify genetic pathway of abscission, which could lead to future economic benefits

A falling leaf often catches a poet's eye, but scientists also wonder about the phenomenon that causes leaves to fall, or abscission in plants. Abscission is the physiological process plants use to separate entire organs, such as leaves, petals, flowers and fruit, that allow plants to discard non-functional or infected organs.

University of Missouri researchers have uncovered the genetic pathway that controls abscission in the plant species Arabidopsis thaliana. The ability to control abscission in plants is of special interest to those in the commercial fruit tree and cut flower industries, which rely heavily on abscission-promoting or inhibiting agents to regulate fruit quality and pre-harvest fruit drop.

"Understanding the physiological mechanism by which plants control abscission is important for understanding both plant development and plant defense mechanisms," said John Walker, director of the MU Interdisciplinary Plant Group at the Christopher S. Bond Life Sciences Center. "Insight into the process of abscission in Arabidopsis thaliana provides a foundation for understanding this fundamental physiological process in other plant species."

Plants abscise an organ for a number of reasons, according Walker. Aged leaves, for example, may be shed to facilitate the recycling of nutrients, ripening fruits dropped to promote seed dispersal and infected or diseased floral organs discarded to prevent the spread of disease. However, why Arabidopsis thaliana is a small flowering plant that is native to Europe, Asia and northwestern Africa, sheds its floral parts after maturation is unclear. The floral part on the plant does not take significant space and abscission does not appear to serve an obvious function. Yet, the genes for abscission have been there for a really long time, Walker said.

Previous studies analyzing abscission in plants have implicated several different genes and gene products. Walker and his colleagues are the first to identify a pathway of genes involved in the process of abscission in Arabidopsis by using a combination of molecular genetics and imagine techniques.

"The process of abscission is a phenomenon that we have yet to fully understand," said Walker, who is also a professor of biological sciences in MU's College of Arts and Science. "Several different genes are involved in the process. Instead of looking at individual genes or proteins, we looked at an entire network at once to see how the difference genes work together in abscission."

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Ecology, The Environment and Conservation:

nachricht New exhaust gas measurement registers ultrafine pollutant particles for the first time
21.01.2020 | Technische Universität Graz

nachricht ZMT-Expert supports the implementation of the ambitious marine reserve in Palau
17.01.2020 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>