Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser-guided sea monkeys show how zooplankton migrations may affect global ocean currents

30.09.2014

Experiments in California demonstrate that collective movements of small zooplankton between water depths create large-scale current patterns with circulation effects as large as wind or tides

Sea monkeys have captured the popular attention of both children and aquarium hobbyists because of their easily observable life cycle -- sold as dehydrated eggs, these tiny brine shrimp readily hatch, develop and mate given little more than a tank of salt water.


A time lapse of migrating sea monkeys (white) and particles suspended in the water (yellow) reveals large, swirling currents created by the swimming animals that mix the surrounding water.

Credit: M. Wilhelmus and J.O. Dabiri/Caltech

Physicists, though, are interested in a shorter-term pattern: Like other zooplankton, brine shrimp vertically migrate in large groups in response to changing light conditions, coming closer to the surface at night and retreating deeper during the day.

Two researchers at the California Institute of Technology have shown experimentally that this pattern creates water currents much larger than the sum of those created by individual organisms in the group. Their results, published in the journal Physics of Fluids, from AIP Publishing, suggest that the collective movement of small marine organisms could affect global ocean circulation patterns on a level comparable to the wind and the tides.

Because brine shrimp (Artemia salina) display phototaxis, a tendency to move towards a light source, researchers Monica Wilhelmus and John Dabiri used lasers to herd a swarm of the small crustaceans in a large water tank and induce a vertical migration pattern. A blue laser rising along the side of the tank caused the brine shrimp to move upwards; a green laser above the tank kept them centered. To visualize the resulting currents, they mixed microscopic silver-coated glass spheres into the water and captured their changing distribution throughout the migration with a high-speed camera.

Previous studies have examined the tiny disturbances created when single plankton move through the water. Taken individually, these currents are not strong enough to impact broad ocean flow patterns. However, when two or more organisms swim in close proximity to each other as they did in this experiment, the eddies that they create interact to create more powerful swirling fluid forces that could alter water circulation on a wider scale.

"This research suggests a remarkable and previously unobserved two-way coupling between the biology and the physics of the ocean: the organisms in the ocean appear to have the capacity to influence their environment by their collective swimming," said Dabiri.

Currents distribute salt, nutrients, and heat throughout the oceans and have been attributed to winds and tides, but these results suggest that living organisms could also play a role. The findings provide experimental support for a theoretical model proposed by Dabiri's group in a 2009 Nature paper, which analyzed the effect of jellyfish on ocean mixing and proposed that such a model could also apply to smaller organisms.

The researchers hope to replicate the experiment in a tank where water density increases with depth, more closely mimicking ocean conditions. "If similar phenomena occur in the real ocean, it will mean that the biomass in the ocean can redistribute heat, salinity and nutrients," said Dabiri.

Because small organisms make up the bulk of oceanic biomass, the researchers estimate that their movement patterns could contribute a trillion watts of power to the ocean -- on par with the wind and the tides. Inside a fish tank, brine shrimp make engaging pets; in their natural habitat, they might have a global environmental impact.

###

The article, "Observations of large-scale fluid transport by laser-guided plankton aggregations," is authored by Monica M. Wilhelmus and John O. Dabiri. It will be published in the journal Physics of Fluids on September 30, 2014 (DOI: 10.1063/1.4895655) After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/pof2/26/10/10.1063/1.4895655

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | Eurek Alert!

Further reports about: biomass circulation conditions global ocean monkeys movement nutrients physics

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>