Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to Life in the Desert: What New Research Reveals About the Importance of Soil Crusts

23.07.2012
Deserts creep outward in various directions across the western United States. The dry wind shuttles clouds of sand across the landscape, leading the charge to take over surrounding land, advancing the growing desertification problem.

The hope for restoring these arid environments and preventing further desertification may exist on the surface of the desert itself, according to new research by American Society of Agronomy and Soil Science Society of America Member Mandy Williams, a lab manager in the school of Life Science at the University of Nevada – Las Vegas. She describes the complex blend of microorganisms carpeting arid environments as biological soil crusts (BSC).

The organisms fuse with soil particles, stabilizing desert crusts and forming fragile peaks in the soil that influence a variety of processes to allocate important resources. Williams says, “These crusts kind of act like a living mulch across a desert, by protecting the surface from erosion. Once you disturb the soil surface, you’re more likely to lose what little resources are available there.”

Williams, along with two other UNLV researchers, performed an in-depth micromorphological investigation of BSC samples from the Mojave Desert to better understand the formation, structure, and significant role soil crusts play in arid environments. Their findings, being released in the September-October edition of Soil Science Society of America Journal, show complex internal soil structures suggesting a rich genetic history and a variety of formation processes.

The development of BSC begins with cyanobacteria, a phylum of photosynthetic bacteria. These bacteria form smooth crusts on the desert surface and strengthen soil structure by sealing off the surface to effects of erosion. Wet-dry cycles cause this newly formed soil crust to expand and contract, leaving cracks in the crust that trap dust as it blows over the desert surface. Yet, dust is an important source of nutrients in the Mojave Desert, where organic matter is lacking and much-needed nutrients must migrate to the desert from surrounding environments.

Meanwhile, cyanobacteria weave around particles in the soil, forming thick layers of fine grains by trapping sediments in a sticky casing. Over many years, these bacteria-soil mixtures grow into jagged micro-peaks that accrete more dust and continue to evolve. These peaks are extremely fragile and sensitive to physical impacts such as vehicles, foot traffic, and grazing. BSC also impacts water distribution in arid environments. In the Av soil horizon, fine dust particles settle and pockets of air form beneath the soil. These cavities trap water at the surface to be used by soil microbes and desert plants when it’s needed most.

But this new research reveals, recovery of valuable BSC after a disturbance, can take years, depending on several environmental factors. Williams says, “These crusts form important features that must be considered, not only for the restoration of crusts, but entire desert ecosystems in the future.”
See the abstract of the research, here: https://www.soils.org/files/publications/sssaj/
abstracts/76-5/s12-0021-5-2012-7-17.pdf

Request to view the rest of the article by contacting the Soil Science Society of America.

Soil Science Society of America Journal, www.soils.org/publications/sssaj, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. Founded in 1936, SSSA proudly celebrated its 75th Anniversary in 2011. For more information, visit www.soils.org or follow @SSSA_soils on Twitter.

Teri Barr | Newswise Science News
Further information:
http://www.sciencesocieties.org

More articles from Ecology, The Environment and Conservation:

nachricht Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

nachricht Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>