Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Islands top a global list of places to protect

12.05.2009
Rare and unique ecological communities will be lost if oceanic islands aren't adequately considered in a global conservation plan, a new study has found.

Although islands tend to harbor fewer species than continental lands of similar size, plants and animals found on islands often live only there, making protection of their isolated habitats our sole chance to preserve them.

Many conservation strategies focus on regions with the greatest biodiversity, measured by counting the number of different plants and animals. "Normally you want to focus on the most diverse places to protect a maximum number of species," said Holger Kreft, a post-doctoral fellow at the University of California, San Diego and one of the two main authors of the study, "but you also want to focus on unique species which occur nowhere else."

To capture that uniqueness, Kreft and colleagues at the University of Bonn, UC San Diego and the University of Applied Sciences Eberswalde used a measure of biodiversity that weights rare species more than widespread ones. They carved the terrestrial realm into 90 biogeographic regions, calculated biodiversity for each, then compared island and continental ecosystems. By this measure, island populations of plants and vertebrate animals are eight to nine times as rich.

Their results, plotted on global maps, will be reported the week of May 11 in the Proceedings of the National Academy of Sciences.

The southwest Pacific island of New Caledonia stands out as the most unique with animals like the kagu, a bird with no close relatives found only in the forested highlands that is in danger of extinction, and plants like Amborella, a small understory shrub unlike any other flowering plant that is thought to be the lone survivor of an ancient lineage.

Fragments of continents that have broken free to become islands like Madagascar and New Caledonia often serve as a final refuge for evolutionary relicts like these. The source of diversity is different on younger archipelagos formed by volcanoes such as the Canary Islands, the Galápagos and Hawaii which offered pristine environments where early colonizers branched out into multiple related new species to fill empty environmental niches. The new measure doesn't distinguish between the two sources of uniqueness, which may merit different conservation strategies.

Although islands account for less than four percent of the Earth's land area, they harbor nearly a quarter of the world's plants, more than 70,000 species that don't occur on the mainlands. Vertebrate land animals – birds, amphibians, reptiles and mammals – broadly follow this same pattern.

"Islands are important and should be part of any global conservation strategy," Kreft said. "Such a strategy wouldn't make any sense if you didn't include the islands."

Threats to biodiversity may also rise faster for islands than for mainlands, the team reports. Scenarios based on a measure of human impact projected to the year 2100 warn that life on islands will be more drastically affected than mainland populations.

"That threat is expected to accelerate particularly rapidly on islands where access to remaining undeveloped lands is comparatively easy" said Gerold Kier, project leader at the University of Bonn and lead author of the study. Expanding farmlands, deforestation, and other changes in how people use land are among the alterations expected to cause the greatest damage.

The researchers also considered future challenges posed by climate change and report mixed impacts. Rising sea levels will swamp low-lying areas and smaller islands, but the ocean itself is expected to moderate island climates by buffering temperature changes. "Although disruptions to island ecosystems are expected to be less severe than on the continents, climate change remains one of the main threats to the biodiversity of the Earth," Kier said. "If we cannot slow it down significantly, protected areas will not be much help."

"We now have new and important data in our hands, but still have no simple solutions for nature conservation," Kreft said. "In particular, we need to answer the question how protected areas with their flora and fauna can complement each other in the best way. The part played by ecosystems, for example their ability to take up the green-house gas carbon dioxide, should be increasingly taken into account."

Co-authors included Tien Ming Lee and Walter Jetz of UC San Diego; Pierre Ibisch and Christoph Nowicki of the University of Applied Sciences Eberswalde; and Jens Mutke and Wilhelm Barthlott of the University of Bonn.

The Academy of Sciences and Literature Mainz, the Wilhelm Lauer Foundation, and the German Federal Ministry of Education and Research funded the research. Holger Kreft holds a Feodor-Lynen Fellowship from the Alexander von Humboldt Foundation.

Holger Kreft | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.pnas.org/cgi/doi/10.1073/pnas.0810306106

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>