Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased tropical forest growth could release carbon from the soil

15.08.2011
A new study shows that as climate change enhances tree growth in tropical forests, the resulting increase in litterfall could stimulate soil micro-organisms leading to a release of stored soil carbon.

The research was led by scientists from the Centre for Ecology & Hydrology and the University of Cambridge, UK. The results are published online today (14 August 2011) in the scientific journal Nature Climate Change.

The researchers used results from a six-year experiment in a rainforest at the Smithsonian Tropical Research Institute in Panama, Central America, to study how increases in litterfall - dead plant material such as leaves, bark and twigs which fall to the ground - might affect carbon storage in the soil. Their results show that extra litterfall triggers an effect called 'priming' where fresh carbon from plant litter provides much-needed energy to micro-organisms, which then stimulates the decomposition of carbon stored in the soil.

Lead author Dr Emma Sayer from the UK's Centre for Ecology & Hydrology said, "Most estimates of the carbon sequestration capacity of tropical forests are based on measurements of tree growth. Our study demonstrates that interactions between plants and soil can have a massive impact on carbon cycling. Models of climate change must take these feedbacks into account to predict future atmospheric carbon dioxide levels."

The study concludes that a large proportion of the carbon sequestered by greater tree growth in tropical forests could be lost from the soil. The researchers estimate that a 30% increase in litterfall could release about 0.6 tonnes of carbon per hectare from lowland tropical forest soils each year. This amount of carbon is greater than estimates of the climate-induced increase in forest biomass carbon in Amazonia over recent decades. Given the vast land surface area covered by tropical forests and the large amount of carbon stored in the soil, this could affect the global carbon balance.

Tropical forests play an essential role in regulating the global carbon balance. Human activities have caused carbon dioxide levels to rise but it was thought that trees would respond to this by increasing their growth and taking up larger amounts of carbon. However, enhanced tree growth leads to more dead plant matter, especially leaf litter, returning to the forest floor and it is unclear what effect this has on the carbon cycle.

Dr Sayer added, "Soils are thought to be a long-term store for carbon but we have shown that these stores could be diminished if elevated carbon dioxide levels and nitrogen deposition boost plant growth."

Co-author Dr Edmund Tanner, from the University of Cambridge, said, "This priming effect essentially means that older, relatively stable soil carbon is being replaced by fresh carbon from dead plant matter, which is easily decomposed. We still don't know what consequences this will have for carbon cycling in the long term."

Barnaby Smith | EurekAlert!
Further information:
http://www.ceh.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>