Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased carbon dioxide levels in air restrict plants’ ability to absorb nutrients

12.06.2015

The rapidly rising levels of carbon dioxide in the atmosphere affect plants’ absorption of nitrogen, which is the nutrient that restricts crop growth in most terrestrial ecosystems. Researchers at the University of Gothenburg have now revealed that the concentration of nitrogen in plants’ tissue is lower in air with high levels of carbon dioxide, regardless of whether or not the plants’ growth is stimulated. The study has been published in the journal Global Change Biology.

Researcher Johan Uddling has been working with Swedish and international colleagues to compile data on how raised levels of carbon dioxide impact on plant growth and nitrogen absorption.


Rice in Japan

Photographer: Kazuhiko Kobayashi

Plant quality impaired by increased carbon dioxide levels

The study examines various types of ecosystems, including crops, grasslands and forests, and involves large-scale field experiments conducted in eight countries on four continents.

“The findings of the study are unequivocal. The nitrogen content in the crops is reduced in atmospheres with raised carbon dioxide levels in all three ecosystem types. Furthermore, we can see that this negative effect exists regardless of whether or not the plants’ growth increases, and even if fertiliser is added. This is unexpected and new,” says Johan Uddling, senior lecturer at the Department of Biological and Environmental Sciences at the University of Gothenburg.

Significance of food quality, biodiversity and productivity

When carbon dioxide levels in the air increase, crops in future will have a reduced nitrogen content, and therefore reduced protein levels. The study found this for both wheat and rice, the two most important crops globally. The study also reveals that the strength of the effect varies in different species of grassland, which may impact on the species composition of these ecosystems.

“For all types of ecosystem the results show that high carbon dioxide levels can impede plants’ ability to absorb nitrogen, and that this negative effect is partly why raised carbon dioxide has a marginal or non-existent effect on growth in many ecosystems,” says Johan Uddling.

Accepted “truths” do not hold

Reduced nitrogen content in atmospheres with raised carbon dioxide has previously been attributed to a kind of dilutive effect, in which nitrogen absorption fails to keep pace with the increase in plants’ photosynthesis and growth.

“The findings of this study show that this interpretation is simplified and partly incorrect. We are seeing reduced nitrogen content even when growth has not been affected. Moreover, the effect is there in trials with powerful fertiliser, which indicates that it is not down to limited access to nitrogen in the soil. Future studies should look at what is causing the effect, but it appears to be linked to plants’ capacity to absorb nitrogen rather than to changed levels in the soil,” says Johan Uddling.

Link to article: http://onlinelibrary.wiley.com/doi/10.1111/gcb.12938/abstract

For further information, please contact:
Johan Uddling, senior lecturer at the Department of Biological and Environmental Sciences, University of Gothenburg
+46 (0)31-786 3757, 073-8267104, johan.uddling@bioenv.gu.se

Weitere Informationen:

http://science.gu.se/english/News/News_detail//increased-carbon-dioxide-levels-i...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>