Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to detect water contamination in situ?

22.09.2016

Scientists from Tomsk Polytechnic University have developed a device for the rapid analysis of liquids on the content of hazardous substances - such as heavy metals. Polytechnicers use a method based on polymer optodes - very small plastic matrices that can be made sensitive to specific substances by means of special reagents.

The matrices change color and its intensity depending on the concentration of the substance. The device is mobile, can carry out analysis in situ even at low temperatures, and its cost is many times less than the price of a spectrophotometer - the most used device for chemical analysis.

“The device is based on polymethacrylate sensors - transparent pieces of plastic with thickness of 1 mm and a size of 3x3 mm. The pores of matrices serve as receptacles, where various chemical reactions can undergo. If a matrix is handled with a special reagent it becomes an optode sensitive to a particular substance. We plunge this optode into the water to test it or simply drip a few drops on it, and it changes its color. Hence, there is a required element.

Sergey Muravyov, the scientific supervisor of the project, head of the TPU International Laboratory Advanced Measurements, says: "The more intense the color is, the higher is the concentration of the substance,” 

For example, if water contains silver optode turns purple-red. According to the scientist, such a method can detect substances even at very low concentrations in water.

“You dip optode into the water and then load it into the device analyzer. There a special electronic device receives optical signal and converts it into an electric three-channel RGB-signal.

After this signal processing the device outputs the data in digital form on the concentration of the searched substance. The analysis takes place immediately,”

- the project manager says.

This method allows the detection of almost all metals, organic materials and various pharmacological agents in water.

“Our method works with those substances with which interaction leads to color change. Indeed, this is not the whole range of substances. But universal methods do not exist. Today, the most widely used method for chemical analysis is spectrophotometry. A modern spectrophotometer costs about 500 thousand rubles, and it is a bulky stationary device. Our device can achieve the same quality of measurements, but it is compact and can cost about 30 thousand rubles at the market placement,” - he says.

Such a device for rapid analysis is useful for environmental and related services personnel of industrial enterprises. For example, oil companies can use the device for the determination of the tracers in the drilling fluid.

“To date, we have prepared a prototype device, - Sergey Muravyov says. - Now we have set ourselves the task to use this method for a multi-component analysis. The fact is that the reagents that configure optode to a definite substance are sensitive to a few substances.”

Let us add, in 2014 the project research team has received a grant of the Russian Scientific Foundation for up to three years.

The project was funded with the three-year grant of the Russian Scientific Foundation in 2014.

http://tpu.ru/en/news-events/930/

For further information, please contact:

Kristina Nabokova

nkb@tpu.ru

Kristina Nabokova | AlphaGalileo

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>