Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How red tide knocks out its competition

05.06.2014

New research reveals how the algae behind red tide thoroughly disables – but doesn't kill – other species of algae. The study shows how chemical signaling between algae can trigger big changes in the marine ecosystem.

Marine algae fight other species of algae for nutrients and light, and, ultimately, survival. The algae that cause red tides, the algal blooms that color blue ocean waters red, carry an arsenal of molecules that disable some other algae. The incapacitated algae don't necessarily die, but their growth grinds to a halt. This could explain part of why blooms can be maintained despite the presence of competitors.

Sampling Red Tide

Kelsey Poulson-Ellestad, a former graduate student at the Georgia Institute of Technology, now at Woods Hole Oceanographic Institution, works with a Conductivity, temperature and depth (CTD) sampling rosette, which is lowered over the side of a vessel and is used to collect water samples from various depths.

Credit: Kelsey Poulson-Ellestad

In the new study, scientists used cutting-edge tools in an attempt to solve an old ecological mystery: Why do some algae boom and some algae bust?

The research team used cultured strains of the algae that cause red tide, exposed competitor algae to its exuded chemicals, and then took a molecular inventory of the competitor algae's growth and metabolism pathways. Red tide exposure significantly slowed the competitor algae's growth and compromised its ability to maintain healthy cell membranes.

"Our study describes the physiological responses of competitors exposed to red tide compounds, and indicates why certain competitor species may be sensitive to these compounds while other species remain relatively resistant," said Kelsey Poulson-Ellestad, a former graduate student at the Georgia Institute of Technology, now at Woods Hole Oceanographic Institution, and the study's co-first author, along with Christina Jones, a Georgia Tech graduate student.

"This can help us determine mechanisms that influence species composition in planktonic communities exposed to red tides, and suggests that these chemical cues could alter large-scale ecosystem phenomena, such as the funneling of material and energy through marine food webs."

The study was sponsored by the National Science Foundation and was published June 2 in the Online Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS). The work was a collaboration between Georgia Tech, the University of Washington, and the University of Birmingham in the United Kingdom.

The algae that form red tide in the Gulf of Mexico are dinoflagellates called Karenia brevis, or just Karenia by scientists. Karenia makes neurotoxins that are toxic to humans and fish. Karenia also makes small molecules that are toxic to other marine algae, which is what the new study analyzed.

"In this study we employed a global look at the metabolism of these competitors to take an unbiased approach to ask how are they being affected by these non-lethal, subtle chemicals that are released by Karenia," said Julia Kubanek, Poulson-Ellestad's graduate mentor and a professor in the School of Biology and the School of Chemistry and Biochemistry at Georgia Tech. "By studying both the proteins and metabolites, which interact to form metabolic pathways, we put together a picture of what's happening inside the competitor algal cells when they're extremely stressed."

The research team used a combination of mass spectrometry and nuclear magnetic resonance spectroscopy to form a holistic picture of what's happening inside the competitor algae. The study is the first time that metabolites and proteins were measured simultaneously to study ecological competition.

"A key aspect of this study was the use of high-resolution metabolomic tools based on mass spectrometry," said Facundo M. Fernández, a professor in the School of Chemistry and Biochemistry, whose lab ran the mass spectrometry analysis. "This allowed us to detect and identify metabolites affected by exposure to red tide microorganisms."

Mass spectrometry was also used for analysis of proteins, an approach called proteomics, led by Brook Nunn at the University of Washington.

The research team discovered that red tide disrupts multiple physiological pathways in the competitor diatom Thalassiosira pseudonana. Red tide disrupted the energy metabolism and cellular protection mechanisms, inhibited their ability to regulate fluids and increased oxidative stress. T. pseudonana exposed to red tide toxins grew 85 percent slower than unexposed algae.

"This competitor that's being affected by red tide is suffering a globally upset state," Kubanek said. "It's nothing like what it would be in a healthy, normal cell."

The work shows that chemical cues in the plankton have the potential to alter large-scale ecosystem processes including primary production and nutrient cycling in the ocean.

The research team found that another competitor diatom, Asterionellopsis glacialis, which frequently co-occurs with Karenia red tides, was partially resistant to red tide, suggesting that co-occurring species may have evolved partial resistance to red tide via robust metabolic pathways.

Other work in Kubanek's lab is examining red tide and its competition in the field to see how these interactions unfold in the wild.

"Karenia is a big mystery. It has these periodic blooms that happen most years now, but what's shaping that cycle is unclear," Kubanek said. "The role of competitive chemical cues in these interactions is also not well understood."

###

This research is supported by the National Science Foundation under award number OCE-1060300. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Kelsey L. Poulson-Ellestad, et al., "Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton." (June, PNAS) http://www.pnas.org/cgi/doi/10.1073/pnas.1402130111

Brett Israel | Eurek Alert!

Further reports about: PNAS Red tides blooms competitor marine algae metabolism metabolites pathways proteins red tide algae species toxic

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>